ЧАСТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ГАЗПРОМ ТЕХНИКУМ НОВЫЙ УРЕНГОЙ»

Методические указания

по организации внеаудиторной самостоятельной работы студентов

по учебной дисциплине

ЕН. 01 «Математика»

математического и общего естественнонаучного цикла программы подготовки специалистов среднего звена 21.02.01 Разработка и эксплуатация нефтяных и газовых месторождений 21.02.03 Сооружение и эксплуатация газонефтепроводов и газонефтехранилищ

Методические указания разработаны в соответствии с рабочей программой учебной дисциплины «Математика» и содержат перечень рекомендаций для оказания методической помощи в организации внеаудиторной самостоятельной работы студентов специальности 21.02.01 Разработка и эксплуатация нефтяных и газовых месторождений, 21.02.03 Сооружение и эксплуатация газонефтепроводов и газонефтехранилиц. Методические указания по организации внеаудиторной самостоятельной работы носят общий характер и адресованы студентам очной формы обучения.

РАЗРАБОТЧИК:

Надежда Юрьевна Автандилова, преподаватель высшей квалификационной категории

Данные методические указания являются собственностью © ЧПОУ «Газпром техникум Новый Уренгой»

Рассмотрены на заседании ЦКМиОЕНД
и рекомендованы к применению
Протокол № <u>1</u> от « <u>13</u> » <u>сентебре</u> 2017г.
Председатель ЦКМиОЕНД
О.Б. Алгазина
Зарегистрированы в реестре банка программной,
оценочной и учебно-методической документации
Регистрационный номер 489. ШУ(СРС). Э.И. ЭГ. Е.Н. ОІ. ЦКИ и ОЕНД. 001-17

СОДЕРЖАНИЕ

Введение	. 4
1 Перечень самостоятельных работ по дисциплине	. 5
2 Инструкции по выполнению внеаудиторной самостоятельной работы	
студентом	. 7
3 Контроль внеаудиторной самостоятельной работы студентов) 9
4 Информационное обеспечение внеаудиторной самостоятельной	
работы студентов10	00
Лист согласования10)2.

ВВЕДЕНИЕ

Уважаемый студент!

Методические указания по выполнению самостоятельной работы по учебной дисциплине «Математика» созданы Вам в помощь для работы во внеаудиторное время.

Внеаудиторная самостоятельная работа проводится с целью:

систематизации и закрепления полученных теоретических знаний и практических умений,

углубления и расширения теоретических знаний,

развития познавательных способностей, творческой инициативы, самостоятельности, ответственности и организованности;

формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации,

развития исследовательских умений;

использования материала, собранного и полученного в ходе самостоятельных занятий на семинарах, на практических и лабораторных занятиях, при написании курсовых и выпускной квалификационной работ, для эффективной подготовки к итоговым зачетам и экзаменам.

Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия.

Наличие положительной оценки (отметки о выполнении) каждого вида самостоятельной работы необходимо для получения допуска к экзамену, поэтому в случае невыполнения работы по любой причине или получения неудовлетворительной оценки за самостоятельную работу Вы должны найти время для ее выполнения или пересдачи.

Внимание! Если в процессе выполнения заданий для самостоятельной работы возникают вопросы, разрешить которые Вам не удается, необходимо обратиться к преподавателю для получения разъяснений.

1 Перечень самостоятельных работ по дисциплине

Методические указания по организации внеаудиторной самостоятельной работы по учебной дисциплине «Математика» состоят из перечня самостоятельных работ по дисциплине, инструкций по выполнению и критериев оценки внеаудиторной самостоятельной работы, а также списка рекомендуемой основной и дополнительной литературы.

В перечне самостоятельных работ по дисциплине указаны наименования тем, которые вынесены на самостоятельное изучение, виды самостоятельной работы и примерные трудозатраты по видам самостоятельной работы.

Для выполнения внеаудиторной самостоятельной работы необходимо пользоваться учебной литературой, Интернет-ресурсами, дополнительной литературой, которые предложены в разделе 4 «Информационное обеспечение внеаудиторной самостоятельной работы» или другими источниками по Вашему усмотрению.

Самостоятельная работа рассчитана на разные уровни мыслительной деятельности. Выполненные работы позволят приобрести не только знания, но и умения, навыки, а также выработать свою методику подготовки, что очень важно в дальнейшем процессе обучения.

При изучении дисциплины предусматриваются следующие виды внеаудиторной самостоятельной работы:

– выполнение расчетно-графических работ.

Таблица 1 - Перечень самостоятельных работ по дисциплине

Наименование	Вид самостоятельной работы	Кол-во	Форма контроля
темы		часов	
Тема 1.1.	Выполнение расчетно-графической	2	Отчетная работа
Функция. Пре-	работы №1		
дел функции.			
Непрерывность			
функции			
Тема 1.2.	Выполнение расчетно-графической	2	Отчетная работа
Производная и	работы №2		
дифференциал			
функции. При-			
ложение произ-			
водной к реше-			
нию задач			
Тема1.3.	Выполнение расчетно-	2	Отчетная работа
Интеграл и его	графической работы №3		
приложения.	1 1		
Тема 1.4.	Выполнение расчетно-	4	Отчетная работа
Дифферен-	графической работы №4		1
циальные урав-	1 1		
нения			
Тема 2.2.	Выполнение расчетно-	4	Отчетная работа
Случайная ве-	графической работы №5		1
личина, ее	1 1 1		
функция рас-			
пределения			
Тема 2.3.	Выполнение расчетно-	2	Отчетная работа
Элементы ма-	графической работы №6		l common particular
тематической	TPWPH 100HOH PWC012H 12C		
статистики			
Раздел 3.	Выполнение расчетно-графической	4	Отчетная работа
Комплексные	работы №7	•	or remain parouta
числа	1		
Раздел 4.	Выполнение расчетно-графической	4	Отчетная работа
Линейная алгебра	работы №8		1
Всего		24	часов

2 Инструкции по выполнению внеаудиторной самостоятельной работы студентом

Внеаудиторная самостоятельная работа— одна из важнейших форм работы студентов. Она призвана привить Вам навыки к поиску источников, анализу новой информации, к умению делать выводы, а также к умению выступать перед аудиторией с творческими работами, подготовленными в ходе выполнения самостоятельной работы. Организация внеаудиторной самостоятельной работы имеет теоретическую и практическую ценность, так как с одной стороны расширяет круг ваших знаний, а с другой стороны учит самостоятельно работать с документами и другой литературой в поисках ответов на интересующие их вопросы.

2.1 Выполнение расчетно-графических работ

Нормы времени выполнения - 2-4 часа

Общие рекомендации и требования к работе с таблицами –

Расчетно-графическая работа — это самостоятельное исследование, которое создано на обоснование теоретического материала по основным темам курса и выработку навыков практического выполнения математических расчетов. Сущность расчетно-графической работы состоит в выполнении наиболее типичных расчетов.

Каждый студент 2-го курса в 4-м семестре должен выполнить шесть расчетно-графических работ по математике. Задания выбираются по номерам списка учебной группы

Правила выполнения расчетно-графической работы:

- при выполнении расчетно-графической работы необходимо строго придерживаться указанных ниже правил. Работа, выполненная без соблюдения этих правил не зачитывается и возвращается для переработки;
- в работу должны быть включены все задачи, указанные в задании, строго по положенному варианту;
- решения задач следует располагать в порядке номеров, указанных в задании, сохраняя номера задач;

- перед решением каждой задачи надо полностью написать ее условие. В том случае, если несколько задач, из которых студент выбирает задачу своего варианта, имеют общую формулировку, следует, переписывая условия задачи, заменить общие данные конкретными, взятыми из соответствующего номера;
- решения задач следует излагать подробно и аккуратно, объясняя и мотивируя все действия по ходу решения и делая четкие и соразмерные необходимые чертежи.

Темы расчетно-графических работ –

Выполнение расчетно-графической работы №1 «Предел функции. Непрерывность»

Выполнение расчетно-графической работы №2 «Дифференцирование функции»

Выполнение расчетно-графической работы №3 «Интегрирование функции»

Выполнение расчетно-графической работы №4 «Дифференциальные уравнения»

Выполнение расчетно-графической работы №5 «Вероятность события. Случайная величина»

Выполнение расчетно-графической работы №6 «Вариационный ряд, его характеристики»

Выполнение расчетно-графической работы №7 «Комплексные числа» Выполнение расчетно-графической работы №8 «Матрицы и определители. Системы линейных уравнений»

Расчетно-графическая работа №1 «Предел функции. Непрерывность»

Работа состоит из двух заданий для 25 вариантов.

Вариант 1

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} \frac{3}{x}, x < -\pi, \\ 2\cos x, -\pi \le x < \pi \\ 0, x \ge \frac{\pi}{2} \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 2} \frac{x^2-5x+6}{x^2-12x+20}$$
 d) $\lim_{x\to -\infty} \frac{x^5-2x+4}{2x^4+3x^2+1}$ g) $\lim_{x\to \infty} \left(\frac{x+4}{x+8}\right)^{-3x}$

b)
$$\lim_{x\to -3} \frac{2x^2+11x+15}{3x^2+5x-12}$$
 e) $\lim_{x\to \infty} \frac{2x^2+3x-5}{7x^3-2x^2+1}$ h) $\lim_{x\to \infty} \left(\frac{2x+3}{5x+7}\right)^{x+1}$

c)
$$\lim_{x\to\infty} \frac{3x^3 - 5x^2 + 2}{2x^3 + 5x^2 - x}$$
 f) $\lim_{x\to3} \frac{x^2 + x - 12}{\sqrt{x - 2} - \sqrt{4 - x}}$ i) $\lim_{x\to0} \frac{1 - \cos 8x}{3x^2}$

Вариант 2

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} \frac{1}{x+1}, & x < -2, \\ \sin \frac{\pi x}{4}, & -2 \le x < 3 \\ x^2, & x \ge 3 \end{cases}$$

a)
$$\lim_{x\to 0} \frac{x^3 - x^2 + 2x}{x^2 + x}$$
 c) $\lim_{x\to \infty} \frac{4x^3 + 7x}{2x^3 - 4x^2 + 5}$ e) $\lim_{x\to -\infty} \frac{3x^2 - 7x + 2}{x^4 + 2x - 4}$

b)
$$\lim_{x\to 1} \frac{2x^2+5x-10}{x^3-1}$$
 d) $\lim_{x\to \infty} \frac{3x^4+2x-5}{2x^2+x+7}$ f) $\lim_{x\to -4} \frac{\sqrt{x+12}-\sqrt{4-x}}{x^2+2x-8}$

g)
$$\lim_{x\to\infty} \left(\frac{x}{x+1}\right)^{2x-3}$$
 h) $\lim_{x\to\infty} \left(\frac{2x+1}{x-1}\right)^x$ i) $\lim_{x\to0} \frac{\sin 3x - \sin x}{5x}$

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} \sqrt{2-x}, x < -2, \\ x^2 + x, -2 \le x \le 1 \\ 3, x > 1 \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 3} \frac{6+x-x^2}{x^3-27}$$
 d) $\lim_{x\to -\infty} \frac{3x^2+7x-4}{x^5+2x-1}$ g) $\lim_{x\to \infty} \left(\frac{2x}{1+2x}\right)^{-4x}$

b)
$$\lim_{x\to 1} \frac{x^3 - 3x + 2}{x^2 - 4x + 3}$$
 e) $\lim_{x\to \infty} \frac{7x^4 - 3x + 4}{3x^2 - 2x + 1}$ h) $\lim_{x\to \infty} \left(\frac{x+1}{2x-1}\right)^{3x}$

c)
$$\lim_{x\to\infty} \frac{5x^4 - 3x^2 + 7}{x^4 + 2x^3 + 1}$$
 f) $\lim_{x\to-3} \frac{\sqrt{x+10} - \sqrt{4-x}}{2x^2 - x - 21}$ i) $\lim_{x\to0} \frac{\cos x - \cos 5x}{2x^2}$

Вариант 4

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} 3x - 1, x < 0, \\ log_3(x+1), 0 \le x \le 2 \\ x^2 - x - 1, x > 2 \end{cases}$$

a)
$$\lim_{x \to 1} \frac{2x^2 - x - 1}{3x^2 - x - 2}$$
 d) $\lim_{x \to \infty} \frac{3x - x^6}{x^2 - 2x + 5}$ g) $\lim_{x \to \infty} \left(\frac{x - 1}{x}\right)^{2 - 3x}$

b)
$$\lim_{x\to 2} \frac{3x^2+2x+1}{x^3-8}$$
 e) $\lim_{x\to -\infty} \frac{2x^2-x+7}{3x^4-5x^2+10}$ h) $\lim_{x\to -\infty} \left(\frac{2x-1}{4x+1}\right)^{3x-1}$

c)
$$\lim_{x\to\infty} \frac{7x^3 - 2x^2 + 4x}{2x^3 + 5}$$
 f) $\lim_{x\to -2} \frac{\sqrt{2-x} - \sqrt{x+6}}{x^2 - x - 6}$ i) $\lim_{x\to 0} \frac{tg_{3x}}{2s_{inx}}$

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} \sin x, x < -\frac{\pi}{2}, \\ -1, -\frac{\pi}{2} \le x < e, \\ \ln x, x \ge e. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 2} \frac{2x^2-7x+4}{x^2-5x+6}$$
 d) $\lim_{x\to \infty} \frac{2x^3+7x-1}{3x^4+2x+5}$ g) $\lim_{x\to \infty} \left(\frac{2x+5}{2x+1}\right)^{5x}$

b)
$$\lim_{x \to -1} \frac{x^4 - x^2 + x + 1}{x^4 + 1} e$$
 $\lim_{x \to -\infty} \frac{4x^3 - 2x^2 + x}{3x^2 - x}$ h) $\lim_{x \to \infty} \left(\frac{5x + 8}{x - 2}\right)^{x + 4}$

c)
$$\lim_{x\to\infty} \frac{x^3 - 4x^2 + 28x}{5x^3 + 3x^2 + x - 1} f$$
 $\lim_{x\to 1} \frac{\sqrt{3 + 2x} - \sqrt{x + 4}}{3x^2 - 4x + 1}$ i) $\lim_{x\to 0} \frac{tgx - sinx}{3x^2}$

Вариант 6

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} 2x + 3, x \le 0, \\ x^2 + 2x + 3, 0 < x < 1, \\ \log_2(x + 1), x \ge 1. \end{cases}$$

a)
$$\lim_{x\to 3} \frac{12+x-x^2}{x^3-27}$$
 d) $\lim_{x\to -\infty} \frac{2x^3+7x^2+4}{x^4+5x-1}$ g) $\lim_{x\to \infty} \left(\frac{x+3}{x}\right)^{-5x}$

b)
$$\lim_{x\to 1} \frac{2x^2 - 3x - 1}{x^4 - 1}$$
 e) $\lim_{x\to \infty} \frac{3x^4 - 2x + 1}{3x^2 + 2x - 5}$ h) $\lim_{x\to -\infty} \left(\frac{x+1}{3x-1}\right)^{2x+1}$

c)
$$\lim_{x\to\infty} \frac{3x^2+10x+3}{2x^2+5x-3}$$
 f) $\lim_{x\to2} \frac{x^2-3x+2}{\sqrt{5-x}-\sqrt{x+1}}$ i) $\lim_{x\to0} \frac{\arcsin5x}{\sin3x}$

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} 2x - 1, x < -\frac{\pi}{2}, \\ tg\frac{x}{2}, -\frac{\pi}{2} \le x \le \frac{\pi}{2}, \\ 1, x > \frac{\pi}{2}. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 1/3} \frac{3x^2+2x-1}{27x^3-1}$$
 d) $\lim_{x\to -\infty} \frac{3x^6-5x^2+2}{2x^3-4x-5}$ g) $\lim_{x\to \infty} \left(\frac{x+2}{x+1}\right)^{1+2x}$

b)
$$\lim_{x\to 2} \frac{2x^2-x+3}{5x^2+3x-3}$$
 e) $\lim_{x\to \infty} \frac{2x^2-5x+2}{x^4+3x^2-9}$ h) $\lim_{x\to -\infty} \left(\frac{2x+1}{x-1}\right)^{4x}$

c)
$$\lim_{x\to\infty} \frac{-3x^4+x^2+x}{x^4+3x-2}$$
 f) $\lim_{x\to-1} \frac{3x^2+4x+1}{\sqrt{x+3}-\sqrt{5+3x}}$ i) $\lim_{x\to 1} (1-x)tg\frac{\pi x}{2}$

Вариант 8

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} x^2 - 3x + 1, x \le -1, \\ 5^{-x}, -1 < x < 0, \\ \sqrt{x}, x \ge 0. \end{cases}$$

a)
$$\lim_{x\to -1} \frac{x^2 - 4x - 5}{x^2 - 2x - 3}$$
 d) $\lim_{x\to \infty} \frac{x^7 + 5x^2 - 4x}{3x^2 + 11x - 7}$ g) $\lim_{x\to \infty} \left(\frac{x + 3}{x - 1}\right)^{x - 4}$

b)
$$\lim_{x\to -2} \frac{x^2+2x}{x^2+4x+4}$$
 e) $\lim_{x\to -\infty} \frac{5x^2-4x+2}{4x^3+2x-5}$ h) $\lim_{x\to \infty} \left(\frac{x+1}{2x-1}\right)^{5x}$

c)
$$\lim_{x\to\infty} \frac{2x^2+7x+3}{5x^2-3x+4}$$
 f) $\lim_{x\to4} \frac{2x^2-9x+4}{\sqrt{5-x}-\sqrt{x-3}}$ i) $\lim_{x\to\pi/2} \frac{1-\sin x}{\pi-2x}$

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} 3x + 5, x \le -1, \\ cos\pi x, -1 < x < 0, \\ e^x, x \ge 0. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x \to -1} \frac{3x^2 + 2x - 1}{-x^2 + x + 2}$$
 d) $\lim_{x \to -\infty} \frac{7x^2 + 5x + 9}{1 + 4x - x^3}$ g) $\lim_{x \to \infty} \left(\frac{2x}{2x - 3}\right)^{3x}$

b)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2}$$
 e) $\lim_{x \to \infty} \frac{2x^3 - 3x^2 + 2x}{x^2 + 7x + 1}$ h) $\lim_{x \to -\infty} \left(\frac{x + 3}{2x - 4}\right)^{x + 2}$

c)
$$\lim_{x\to\infty} \frac{-x^2+3x+1}{3x^2+x-5}$$
 f) $\lim_{x\to5} \frac{\sqrt{2x+1}-\sqrt{x+6}}{2x^2-7x-15}$ i) $\lim_{x\to0} \frac{tg2x-sin2x}{x^2}$

Вариант 10

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} log_2(1-x), x \le -1, \\ 2x+3, -1 < x \le 4, \\ \sqrt[3]{2x}, x > 4. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x \to 3} \frac{3x^2 - 11x + 6}{2x^2 - 5x - 3}$$
 d) $\lim_{x \to \infty} \frac{3x^4 + x^2 - 6}{2x^2 + 3x + 1}$ g) $\lim_{x \to \infty} \left(\frac{x - 7}{x}\right)^{2x + 1}$

b)
$$\lim_{x \to -4} \frac{2x^2 + 7x - 4}{x^3 + 64}$$
 e) $\lim_{x \to -\infty} \frac{3x^2 - 7x + 5}{4x^5 - 3x^3 + 2}$ h) $\lim_{x \to -\infty} \left(\frac{2x + 1}{3x - 1}\right)^{x - 1}$

c)
$$\lim_{x\to\infty} \frac{x^3 - 3x^2 + 10}{7x^3 + 2x + 1}$$
 f) $\lim_{x\to-5} \frac{\sqrt{3x + 17} - \sqrt{2x + 12}}{x^2 + 8x + 15}$ i) $\lim_{x\to0} \frac{1 - \cos^2 x}{xtgx}$

Вариант 11

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} x, x \le -\frac{\pi}{2}, \\ \operatorname{tg} \frac{x}{2}, -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ \sin x, x \ge \frac{\pi}{2}. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 2} \frac{x^3-8}{x^2+x-6}$$

d)
$$\lim_{x \to -\infty} \frac{2x^2 + 5x + 7}{3x^4 - 2x^2 + x}$$
 g) $\lim_{x \to \infty} \left(\frac{x - 1}{x + 4}\right)^{3x + 2}$

g)
$$\lim_{x\to\infty} \left(\frac{x-1}{x+4}\right)^{3x+2}$$

b)
$$\lim_{x\to -5} \frac{4x^2+19x-5}{2x^2+11x+5}$$
 e) $\lim_{x\to \infty} \frac{7x^5+6x^4-x^3}{2x^2+6x+1}$

e)
$$\lim_{x\to\infty} \frac{7x^5+6x^4-x^3}{2x^2+6x+1}$$

c)
$$\lim_{x\to\infty} \frac{4x^2+5x-7}{2x^2-x+10}$$
 f) $\lim_{x\to0} \frac{\sqrt{x^2+2}-\sqrt{2}}{\sqrt{x^2+1}-1}$

f)
$$\lim_{x\to 0} \frac{\sqrt{x^2+2}-\sqrt{2}}{\sqrt{x^2+1}-1}$$

h)
$$\lim_{x\to 0} \left(\frac{1}{tgx} - \frac{1}{\sin x}\right)$$
 i) $\lim_{x\to \infty} \left(\frac{5x-3}{x+4}\right)^{x+3}$

i)
$$\lim_{x\to\infty} \left(\frac{5x-3}{x+4}\right)^{x+3}$$

Вариант 12

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} 2 - 3x^2, x < 0, \\ 2\cos 3x, 0 \le x < \frac{\pi}{2}, \\ -x, x \ge \frac{\pi}{2}. \end{cases}$$

a)
$$\lim_{x\to -1} \frac{x^2-x-2}{x^3+1}$$

d)
$$\lim_{x\to\infty} \frac{3x^3 + 4x^2 - 7x}{2x^2 + 7x - 3}$$

a)
$$\lim_{x\to -1} \frac{x^2 - x - 2}{x^3 + 1}$$
 d) $\lim_{x\to \infty} \frac{3x^3 + 4x^2 - 7x}{2x^2 + 7x - 3}$ g) $\lim_{x\to \infty} \left(\frac{2x + 1}{2x - 1}\right)^{x + 2}$

b)
$$\lim_{x\to 1} \frac{x^3 - x^2 + x - 1}{x^3 + x - 2}$$
 e) $\lim_{x\to -\infty} \frac{4 - 3x - 2x^2}{3x^4 + 5x}$ h) $\lim_{x\to -\infty} \left(\frac{2x - 3}{7x + 4}\right)^x$

e)
$$\lim_{x \to -\infty} \frac{4-3x-2x^2}{3x^4+5x}$$

$$h) \lim_{x\to-\infty} \left(\frac{2x-3}{7x+4}\right)^x$$

c)
$$\lim_{x\to\infty} \frac{3x^4 + 2x + 1}{x^4 - x^3 + 2x}$$
 f) $\lim_{x\to0} \frac{\sqrt{7-x} - \sqrt{7+x}}{\sqrt{7}x}$ i) $\lim_{x\to0} \frac{\sin^2 3x - \sin^2 x}{x^2}$

f)
$$\lim_{x\to 0} \frac{\sqrt{7-x}-\sqrt{7+x}}{\sqrt{7}x}$$

i)
$$\lim_{x\to 0} \frac{\sin^2 3x - \sin^2 x}{x^2}$$

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} -3x, x \le 0, \\ \frac{x^2}{3}, 0 < x \le 3, \\ -x, x > 3. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 4} \frac{x^2-16}{x^2+x-20}$$
 d) $\lim_{x\to -1} \frac{5x^3-3x^2+7}{2x^4+3x^2+1}$ g) $\lim_{x\to \infty} \left(\frac{x-2}{x+1}\right)^{2x-3}$

b)
$$\lim_{x\to 1} \frac{x^2 - 2x + 1}{2x^2 - 7x + 5}$$
 e) $\lim_{x\to -\infty} \frac{7 - 3x^4}{2x^3 + 3x^2 - 5}$ h) $\lim_{x\to -\infty} \left(\frac{x - 5}{3x + 4}\right)^{2x}$

c)
$$\lim_{x\to\infty} \frac{3x^3 + 2x + 9}{2x^2 - x + 4}$$
 f) $\lim_{x\to0} \frac{3x}{\sqrt{1 + x} - \sqrt{1 - x}}$ i) $\lim_{x\to0} \frac{\sin 7x - \sin 3x}{x \sin x}$

Вариант 14

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} 3^{-x}, x < -1, \\ -\frac{x}{3}, -1 \le x < 5, \\ \sqrt{x+4}, x \ge 5. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to -3} \frac{4x^2+11x-3}{x^2+2x-3}$$
 d) $\lim_{x\to \infty} \frac{5x^2-3x+1}{1+2x-x^4}$ g) $\lim_{x\to \infty} \left(\frac{x}{x-3}\right)^{x-5}$

b)
$$\lim_{x\to 2} \frac{x^3-8}{2x^2-9x+10}$$
 e) $\lim_{x\to \infty} \frac{8x^4+7x^3-3}{3x^2-5x+1}$ h) $\lim_{x\to \infty} \left(\frac{x+3}{4x-5}\right)^{2x}$

c)
$$\lim_{x\to\infty} \frac{3x^2+5x-7}{3x^2+x+1}$$
 f) $\lim_{x\to4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$ i) $\lim_{x\to0} \frac{1-\cos 5x}{2x^2}$

Вариант 15

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} sinx, x \le -\pi, \\ x + \pi, -\pi < x < 0, \\ -e^x, x \ge 0. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 3} \frac{3x^2 - 7x - 6}{2x^2 - 7x + 3}$$
 d) $\lim_{x\to -\infty} \frac{2x^3 + 3x^2 + 5}{3x^2 - 4x + 1}$ g) $\lim_{x\to \infty} \left(\frac{3x - 4}{3x + 2}\right)^{2x}$

b)
$$\lim_{x \to -2} \frac{9x^2 + 17x - 2}{x^2 + 2x}$$
 e) $\lim_{x \to -\infty} \frac{3x + 7}{2 - 3x + 4x^2}$ h) $\lim_{x \to -\infty} \left(\frac{x - 2}{3x + 1}\right)^{5x}$

c)
$$\lim_{x \to \infty} \frac{2x^3 + 7x - 2}{3x^3 - x - 4}$$
 f) $\lim_{x \to -1} \frac{\sqrt{5 + x} - 2}{\sqrt{8 - x} - 3}$ i) $\lim_{x \to 0} \frac{\cos 2x - \cos 4x}{3x^2}$

Вариант 16

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} x^2 - x, x \le 1\\ \ln x, 1 < x \le e^2, \\ \sqrt{x}, x > e^2. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to -2} \frac{4x^2+7x-2}{3x^2+8x+4}$$
 d) $\lim_{x\to \infty} \frac{6x^2-5x+2}{4x^3+2x-1}$ g) $\lim_{x\to \infty} \left(\frac{2x-1}{2x+4}\right)^{3x-1}$

b)
$$\lim_{x\to 1} \frac{x^3+x-2}{x^3-x^2-x+1}$$
 e) $\lim_{x\to -\infty} \frac{2x^3-3x+1}{7x+5}$ h) $\lim_{x\to -\infty} \left(\frac{3x-4}{x+6}\right)^{x-1}$

c)
$$\lim_{x\to 0} \frac{18x^2 + 5x}{8 - 3x - 9x^2}$$
 f) $\lim_{x\to 5} \frac{\sqrt{x+4} - 3}{\sqrt{x-1} - 2}$ i) $\lim_{x\to 0} \frac{arctg2x}{tg3x}$

Вариант 17

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} \cos x, x \le -\pi, \\ -1, -\pi < x < 3, \\ \log_2(x+1), x \ge 3 \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x \to -1} \frac{5x^2 + 4x - 1}{3x^2 + x - 2}$$
 d) $\lim_{x \to -\infty} \frac{11x^3 + 3x}{2x^2 - 2x + 1}$ g) $\lim_{x \to \infty} \left(\frac{2x - 4}{2x}\right)^{-3x}$

b)
$$\lim_{x\to 0} \frac{4x^3 - 2x^2 + 5x}{3x^2 + 7x}$$
 e) $\lim_{x\to \infty} \frac{10x - 7}{3x^4 + 2x^2 + 1}$ h) $\lim_{x\to \infty} \left(\frac{x - 2}{3x + 10}\right)^{3x}$

c)
$$\lim_{x\to\infty} \frac{3x^4 - 6x^2 + 2}{x^4 + 4x - 3}$$
 f) $\lim_{x\to7} \frac{\sqrt{x - 3} - 2}{\sqrt{x + 2} - 3}$ i) $\lim_{x\to0} \frac{tg3x - sin3x}{2x^2}$

Вариант 18

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} x^2, x < 0, \\ x - 1, 0 \le x < 1, \\ \ln x, x \ge 1. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to -1} \frac{x^2 - 4x - 5}{3x^2 + 2x - 2}$$
 d) $\lim_{x\to \infty} \frac{8x^2 + 3x + 5}{4x^3 - 2x^2 + 1}$ g) $\lim_{x\to \infty} \left(\frac{x + 5}{x}\right)^{3x + 4}$

b)
$$\lim_{x \to 1} \frac{4x^4 - 5x^2 + 1}{x^2 - 1}$$
 e) $\lim_{x \to -\infty} \frac{5x^4 - 3x^2}{1 + 2x + 3x^2}$ h) $\lim_{x \to -\infty} \left(\frac{2x - 3}{x + 4}\right)^{6x + 1}$

c)
$$\lim_{x\to\infty} \frac{8x^2+4x-5}{4x^2-3x+2}$$
 f) $\lim_{x\to3} \frac{\sqrt{4x-3}-3}{x^2-9}$ i) $\lim_{x\to\pi/4} \frac{1-\sin 2x}{\pi-4x}$

Вариант 19

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} \frac{1}{x}, x < 0, \\ \sin 2x, 0 \le x < \frac{\pi}{2}, \\ x - \frac{\pi}{2}, x \ge \frac{\pi}{2}. \end{cases}$$

a)
$$\lim_{x\to -1} \frac{7x^2+4x-3}{2x^2+3x+1}$$
 d) $\lim_{x\to -\infty} \frac{6x^3+5x^2-3}{2x^2-x+7}$ g) $\lim_{x\to \infty} \left(\frac{x-7}{x+1}\right)^{4x-2}$

b)
$$\lim_{x\to 3} \frac{3x^2+5x-1}{x^2-5x+6}$$
 e) $\lim_{x\to \infty} \frac{5x+3}{x^3-4x^2-x}$ h) $\lim_{x\to -\infty} \left(\frac{x+3}{3x-1}\right)^{2x}$

c)
$$\lim_{x\to\infty} \frac{8x^4 - 4x^2 + 3}{2x^4 + 1}$$
 f) $\lim_{x\to3} \frac{\sqrt{5x + 1} - 4}{x^2 + 2x - 15}$ i) $\lim_{x\to0} \frac{\cos 4x - \cos^3 4x}{3x^2}$

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} \frac{5}{x}, x < -1, \\ 3x - 2, -1 \le x < 2, \\ 2^x, x \ge 2. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 4} \frac{3x^2 - 3x + 2}{x^2 - x - 12}$$
 e) $\lim_{x\to -\infty} \frac{3x^4 + 5x}{2x^2 - 3x - 7}$ i)

b)
$$\lim_{x\to -5} \frac{x^2 - x - 30}{x^3 + 125}$$
 f) $\lim_{x\to 0} \frac{2 - \sqrt{x^2 + 4}}{3x^2}$ $\lim_{x\to 0} \left(\frac{1}{\sin 2x} - \frac{1}{tg2x}\right)$

c)
$$\lim_{x\to\infty} \frac{3x^2-4x+2}{6x^2+5x+1}$$
 g) $\lim_{x\to\infty} \left(\frac{x+2}{x}\right)^{3-2x}$

d)
$$\lim_{x\to\infty} \frac{3x^2+4x-7}{x^4-2x^3+1}$$
 h) $\lim_{x\to\infty} \left(\frac{6x+5}{x-10}\right)^{5x}$

Вариант 21

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} -2\sin x, x \le -\pi, \\ 0, -\pi < x < e, \\ \ln x, x \ge e. \end{cases}$$

a)
$$\lim_{x\to 2} \frac{2x^2 - 9x + 10}{x^2 + 3x - 10}$$
 b) $\lim_{x\to 4} \frac{x^2 + 3x - 28}{x^3 - 64}$ c) $\lim_{x\to \infty} \frac{7x^3 + 4x}{x^3 - 3x + 2}$

d)
$$\lim_{x\to -\infty} \frac{8x^5 - 4x^3 + 3}{2x^3 + x - 7}$$
 f) $\lim_{x\to 0} \frac{\sqrt{x^2 + 4} - 2}{\sqrt{x^2 + 16} - 4}$

f)
$$\lim_{x\to 0} \frac{\sqrt{x^2+4}-2}{\sqrt{x^2+16}-4}$$

h)
$$\lim_{x\to-\infty} \left(\frac{3x+7}{x+4}\right)^{4x}$$

e)
$$\lim_{x\to\infty} \frac{2x^2 - 5x + 3}{3x^4 - 2x^2 + x}$$
 g) $\lim_{x\to\infty} \left(\frac{2 - 3x}{5 - 3x}\right)^x$

g)
$$\lim_{x\to\infty} \left(\frac{2-3x}{5-3x}\right)^x$$

i)
$$\lim_{x\to 0} \frac{\cos^2 x - \cos^2 2x}{x^2}$$

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} log_3(1-x), x \le -2, \\ x+3, -2 < x < 2, \\ x^2, x \ge 2. \end{cases}$$

Задание 2.Найти указанные пределы.

a)
$$\lim_{x\to 1} \frac{4x^2+x-5}{x^2-2x+1}$$

$$\lim_{x\to 1} \frac{4x^2+x-5}{x^2-2x+1}$$
 d) $\lim_{x\to\infty} \frac{2x^2-7x+1}{x^3+4x^2-3}$ g) $\lim_{x\to\infty} \left(\frac{1-x}{2-x}\right)^{3x}$

g)
$$\lim_{x\to\infty} \left(\frac{1-x}{2-x}\right)^{3x}$$

b)
$$\lim_{x\to 1/2} \frac{8x^3-1}{x^2-1/4}$$
 e) $\lim_{x\to -\infty} \frac{2x^5-x^3}{4x^2+3x-6}$ h) $\lim_{x\to \infty} \left(\frac{x-1}{4x+5}\right)^{3x}$

e)
$$\lim_{x \to -\infty} \frac{2x^5 - x^3}{4x^2 + 3x - 6}$$

h)
$$\lim_{x\to\infty} \left(\frac{x-1}{4x+5}\right)^{3x}$$

c)
$$\lim_{x\to\infty} \frac{1+4x-x^4}{x+3x^2+2x^4}$$
 f) $\lim_{x\to0} \frac{3x}{\sqrt{5-x}-\sqrt{5+x}}$ i) $\lim_{x\to0} \frac{\arcsin 5x}{x^2-x}$

$$f) \quad \lim_{x \to 0} \frac{3x}{\sqrt{5-x} - \sqrt{5+x}}$$

$$i) \quad \lim_{x \to 0} \frac{\arcsin 5x}{x^2 - x}$$

Вариант 23

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} 2^{-x}, x \le -1, \\ x^2 - 2x - 1, -1 < x \le 3, \\ -x + 2, x > 3. \end{cases}$$

a)
$$\lim_{x\to 2} \frac{-5x^2+11x-2}{3x^2-x-10} d$$
 $\lim_{x\to -\infty} \frac{5x^4-2x^3+3}{2x^2+3x-7}$ g) $\lim_{x\to \infty} \left(\frac{4x-1}{4x+1}\right)^{2x}$

g)
$$\lim_{x\to\infty} \left(\frac{4x-1}{4x+1}\right)^{2x}$$

b)
$$\lim_{x\to 4} \frac{x^2+3x-28}{x^2-4x}$$
 e) $\lim_{x\to \infty} \frac{3x+1}{x^3-5x^2+4x}$ h) $\lim_{x\to -\infty} \left(\frac{5x-7}{x+6}\right)^{2x}$

e)
$$\lim_{x\to\infty} \frac{3x+1}{x^3-5x^2+4x}$$

h)
$$\lim_{x\to-\infty} \left(\frac{5x-7}{x+6}\right)^{2x}$$

c)
$$\lim_{x\to\infty} \frac{2x^3 + 7x^2 - 2}{6x^3 - 4x + 3}$$
 f) $\lim_{x\to3} \frac{\sqrt{2x + 7} - 5}{3 - \sqrt{x}}$ i) $\lim_{x\to0} \frac{1 - \cos^2 2x}{x \arcsin x}$

$$i) \quad \lim_{x \to 0} \frac{1 - \cos^2 2x}{x \ arcsinx}$$

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} \sqrt{1-x}, & x \le 0, \\ \log_{\frac{1}{2}}(x+1), & 0 < x < 3, \\ x-5, & x \ge 3. \end{cases}$$

Задание 2. Найти указанные пределы.

a)
$$\lim_{x\to 7} \frac{x^2 - 5x - 14}{2x^2 - 9x - 35}$$
 d) $\lim_{x\to \infty} \frac{8x^3 + x^2 - 7}{2x^2 - 5x + 3}$ g) $\lim_{x\to \infty} \left(\frac{3x + 4}{3x}\right)^{-2x}$

b)
$$\lim_{x \to -2} \frac{3x^2 + 11x + 10}{x^2 - 5x + 14} e$$
) $\lim_{x \to -\infty} \frac{2 - x - 3x^2}{x^3 - 16}$ h) $\lim_{x \to \infty} \left(\frac{3 - 4x}{2 - x}\right)^{6x}$

c)
$$\lim_{x\to\infty} \frac{3x+14x^2}{1+2x+7x^2}$$
 f) $\lim_{x\to0} \frac{\sqrt{1+3x^2}-1}{x^3+x^2}$ i) $\lim_{x\to0} \frac{1-\cos 4x}{x\sin x}$

Вариант 25

Задание 1. Построить график функции и найти точки разрыва функции.

$$f(x) = \begin{cases} -x^2 - 2x, x \le -2, \\ x - 1, -2 < x < 1, \\ 3^x, x \ge 1. \end{cases}$$

a)
$$\lim_{x\to 5} \frac{3x^2 - 6x - 45}{2x^2 - 3x - 35}$$
 f) $\lim_{x\to 3} \frac{x^3 - 27}{\sqrt{3x} - x}$

b)
$$\lim_{x\to -2} \frac{x^2-4}{3x^2+x-10}$$
 g) $\lim_{x\to \infty} \left(\frac{2x-1}{2x+4}\right)^{-x}$

c)
$$\lim_{x\to\infty} \frac{x-2x^2+5x^4}{2+3x^2+x^4}$$
 h) $\lim_{x\to\infty} \left(\frac{1-2x}{3-x}\right)^{-x}$

d)
$$\lim_{x\to -\infty} \frac{3x^4 + 2x^2 - 8}{8x^3 - 4x + 5}$$
 i) $\lim_{x\to 0} \frac{\cos 5x - \cos x}{4x^2}$

e)
$$\lim_{x\to\infty} \frac{4x^2-10x+7}{2x^3-3x}$$

Расчетно-графическая работа №2 «Дифференцирование функции»

Работа состоит из 3 заданий для 25 вариантов.

Вариант 1

1. Найти первые производные функций.

a)
$$y = 3x^5 - \frac{1}{x} + \sqrt[4]{x} + 2^{3x} + 7x^7 + e^{-x^2}$$
; 6) $y = \frac{\sin x}{\cos^2 x}$; B) $y = \frac{x^3}{(x-2)^2}$;

- r) $y = (x+1)^2 \cos 5x + \ln(tg(2x+1))$;
- д) $y = \operatorname{arctg}(e^{2x} + 3) + \sqrt{x + \sqrt[3]{x}} + 7^{\operatorname{ctg}^2 x}$
- 2. Показать, что функция $y = xe^{-x^2/2}$ удовлетворяет уравнению $xy' = (1-x^2)y$.
 - 3. Составить уравнение касательной и нормали к кривой $y = (4x x^2)/4$ в точке с абсциссой $x_0 = 2$.

Вариант 2

a)
$$y = 4x^7 + \frac{1}{x^2} - \sqrt{2x} + 2^{tgx} + 3^{\cos 4x}$$
;

6)
$$y = x^2 \cos 7x + \sin(3x^7 + 1) + 8x$$
; B) $y = \frac{x^2}{(x+1)^2}$;

$$\Gamma) y = \frac{e^{3x+2}}{1+\cos 3x}; \qquad \qquad \exists y = \arcsin e^{4x} + (x+2)e^{-x^2} + \ln^5 \sin x.$$

- 2. Показать, что функция $y = \frac{\sin x}{x}$ удовлетворяет уравнению $xy' + y = \cos x$.
- 3. Составить уравнение касательной и нормали к кривой $y = 2x^2 + 3x 1 \,\, \text{в точке c абсциссой} \,\, x_{_0} = -2 \,.$

1. Найти первые производные функций.

B)
$$y = \ln \frac{x^2}{1 - x^2}$$
; $y = \cos^4 x + \sin^4 x + \sin(x + 6) - x \cos 4x + 3x \arcsin 2x$;

Д)
$$y = \sqrt{x^2 + 1} + \sqrt[3]{x^3 + 1} + (x^2 + 2x + 2)e^{-x}$$
.

- 2. Показать, что функция $y = 5e^{-2x} + e^x/3$ удовлетворяет уравнению $y' + 2y = e^x$.
- 3. Составить уравнение касательной и нормали к кривой $y = x x^3$ в точке с абсциссой $x_0 = -1$.

Вариант 4

1. Найти первые производные функций.

a)
$$y = 9x^2 + \frac{1}{2x^2} - \sqrt[3]{x} + \frac{3}{x} + x^2 + e^{-x^2}$$
; 6) $y = \sqrt[3]{x^3 + 1}$;

B)
$$y = \frac{9-x^2}{9+x^2}$$
; Γ) $y = 3\sin^2 x \cos 2x + \ln(\sin(2x+5)) + x \arctan(3x)$;

д)
$$y = e^{\sin 5x} \ln x + 9^{\cos^2 x}$$
.

- 2. Показать, что функция $y = 2 + c\sqrt{1 x^2}$, c = const удовлетворяет уравнению $(1 x^2)y' + xy = 2x$.
- 3. Составить уравнение касательной и нормали к кривой $y = x^2 + 8\sqrt{x} 32$ в точке с абсциссой $x_0 = 4$.

Вариант 5

a)
$$y = 3x^5 - \frac{1}{x^5} - \sqrt[5]{x} + 5^{tgx} + 3^{\sin x}$$
; 6) $y = 2\sqrt{4x + 3} - \frac{3}{\sqrt{x^3 + x + 1}}$;

B)
$$y = \frac{1+e^x}{1-e^x}$$
; $y = \sin^2 2x + (\ln x + 1)^2 \cos 2x + \ln(tg5x)$;

$$д) y = \arcsin \sqrt{1 - 4x} + x\sqrt{1 + x^2}$$

- 2. Показать, что функция $y = x\sqrt{1-x^2}$ удовлетворяет уравнению $yy' = x 2x^3$.
- 3. Составить уравнение касательной и нормали к кривой $y = x + \sqrt{x^3}$ в точке с абсциссой $x_0 = 1$.

1. Найти первые производные функций.

a)
$$y = 2x^7 - \frac{1}{7x^7} - \sqrt[7]{2x} + e^{\sqrt{2x}} + 3$$
; 6) $y = \sqrt{x^3 + 1} + \frac{1}{\sqrt{x^2 + 1}}$;

B)
$$y = \frac{x^2}{x^3 - 1}$$
; $y = (3 - \sin^2 x)^3 + \frac{1 + \cos 2x}{x^3} + \sin(3x + 9)$;

д)
$$y = arctgx^2 + 7x^6 + x^2 \ln(x^2 + 1)$$

- 2. Показать, что функция $y = -\frac{1}{3x+c}$, c = const удовлетворяет уравнению $y' = 3y^2$.
- 3. Составить уравнение касательной и нормали к кривой $y = \sqrt[3]{x^2} 20 \, \, \text{в точке c абсциссой} \, \, x_{_0} = -8 \, .$

Вариант 7

a)
$$y = 3x^7 - \frac{1}{x^7} - \sqrt[7]{3x} + \ln \sqrt{x+1} + (16x^2 + 1)arctg 4x$$
;

6)
$$y = \sqrt{3 - 4x + 5x^2} + 4x \ln x$$
;

B)
$$y = \frac{\sin 5x}{4 - \cos 5x}$$
; $y = \arcsin(3x^2 + 2) + \frac{\sin^2 x}{2 + \cos^2 x}$;

д)
$$y = 3^{\sin^2 x} + (2x+5)e^{-x^5}$$
.

- 2. Показать, что функция $y = \frac{c}{\cos x}$, c = const удовлетворяет уравнению y' ytgx = 0.
- 3. Составить уравнение касательной и нормали к кривой $y = \frac{1+\sqrt{x}}{1-\sqrt{x}} \ \mbox{в точке c абсциссой} \ \ x_{_0} = 4 \, .$

1. Найти первые производные функций.

a)
$$y = 4x^9 - \frac{4}{x^9} - \sqrt[9]{4x} + 3x^2 \ln x^3$$
; 6) $y = (2x + 2\cos x)e^{-x}$;

B)
$$y = \frac{x^2 + 1}{x^2 - 1}$$
; r $y = e^x \cos x + 2^{ctg^2 x} + x \arccos \sqrt{4 - x^2}$;

д)
$$y = \frac{3 + \sin 2x}{9 - e^{2x}} + arctg \frac{2x}{1 - x^2}$$
.

- 2. Показать, что функция $y = \ln(c + e^x)$, c = const удовлетворяет уравнению $y' = e^{x-y}$.
- 3. Составить уравнение касательной и нормали к кривой $y = 8\sqrt[4]{x} 70$ в точке с абсциссой $x_0 = 16$.

Вариант 9

B)
$$y = e^{\sin 4x + 8} + \cos^{10} x + \sin 10x$$
; Γ) $y = tg^2 \sqrt{x+5} + 8x + 7 + 3^{\arccos 3x}$;

д)
$$y = \frac{\arcsin x}{\sqrt{1-x^2}} + \sqrt{1+\ln^2 x}$$
.

- 2. Показать, что функция $y = \sqrt{x^2 cx}$, c = const удовлетворяет уравнению $2xyy' = (x^2 + y^2)$.
- 3. Составить уравнение касательной и нормали к кривой $y = 2x^2 3x + 1$ в точке с абсциссой $x_0 = 1$.

1. Найти первые производные функций.

a)
$$y = 5x^{10} + \frac{5}{x^{10}} + \sqrt[10]{5x} + \ln \sin(3x+5)$$
; 6) $y = x^2 \sqrt{1-x^2}$;

B)
$$y = \frac{x^3}{x^2 - 1}$$
; $y = (e^{\cos x} + 3)^2 + \sqrt{1 + \cos^2 x^2} + \sin x \cos(7x + 5)$;

д)
$$y = arctg \frac{x}{\sqrt{1-x^2}} + 5^{\sin x^3}$$
.

- 2. Показать, что функция $y = x(c \ln x)$, c = const удовлетворяет уравнению xy' = y x.
- 3. Составить уравнение касательной и нормали к кривой $y = \frac{x^2 3x + 6}{x^2} \ \ \text{в точке c абсциссой} \ \ x_0 = 3 \, .$

Вариант 11

a)
$$y = 3x^{11} + \frac{5}{x^{11}} + \sqrt[11]{x^3} + 2\cos(4x + x^2);$$
 6) $y = (1 - x^2)\cos 2x + e^{-x}\sin 2x;$

B)
$$y = \frac{x}{\sqrt{25 - x^2}}$$
; Γ $y = arctg(\ln x) + \ln(\sin x) + \left(\sin \frac{x}{2} - \cos \frac{x}{2}\right)^2$;

д)
$$y = \sqrt[3]{x + x\sqrt{x}} + \ln^5(x^2 - 1)$$
.

- 2. Показать, что функция $y = e^{tg(x/2)}$ удовлетворяет уравнению $y' \sin x = y \ln y$.
- 3. Составить уравнение касательной и нормали к кривой $y = \sqrt{x} 3\sqrt[3]{x}$ в точке с абсциссой $x_0 = 64$.

1. Найти первые производные функций.

a)
$$y = 12x^7 - \frac{12}{x^7} + \sqrt[7]{x^2} + 3^{\cos 4x} + 7^{\cos 4x}$$
; 6) $y = x^2 \arccos \frac{x}{2} - 4x + (x^3 + x^2)e^{-x}$;

B)
$$y = \frac{x^5}{x^4 + 2}$$
; Γ) $y = arctg^2 x + 6x^2 + \frac{4 + \cos 3x}{\sin(5x + 3)} + e^{ctg3x}$;

Д)
$$y = 5^{\frac{1-x^2}{1+x^2}} + \sqrt[4]{1+\cos x^4}$$
.

2. Показать, что функция $y = \frac{x+1}{1-x}$ удовлетворяет уравнению

$$y' = \frac{1 + y^2}{1 + x^2} \,.$$

3. Составить уравнение касательной и нормали к кривой $y = \frac{x^3 + 2}{x^3 - 2} \ \ \text{в точке c абсциссой} \ \ x_0 = 2 \ .$

Вариант 13

1. Найти первые производные функций.

a)
$$y = 6x^7 + \frac{7}{x^6} + \sqrt[6]{x^5} + x^5 e^{-x};$$
 6) $y = \ln(x^2 + 5) + 2^{tg3x};$

B)
$$y = \frac{x^6}{6x^5 - 1}$$
; $y = \sqrt[3]{2 - x^2 \sqrt{x}} + \ln^3 \sin(3x + 3)$;

д)
$$y = arctg \frac{x}{\sqrt{1-x^2}} + \frac{\sin x + \cos x}{\sin x - \cos x}$$
.

2. Показать, что функция $y = \frac{x+2}{1+2x}$ удовлетворяет уравнению

$$y - xy' = 2(1 + x^2y').$$

3. Составить уравнение касательной и нормали к кривой $y = 2x^2 + 3$ в точке с абсциссой $x_0 = -1$.

Вариант 14

1. Найти первые производные функций.

$$\Gamma) y = (3x+1)^5 \cos 3x + \frac{\sin x}{3\cos^2 x}; \qquad \qquad \Delta) y = arctg^2 e^x + 5^{\frac{x}{x+1}} + \sqrt[3]{x^2 + 3x}.$$

- 2. Показать, что функция $y = \sqrt[3]{2 + 3x 3x^2}$ удовлетворяет уравнению $yy' = \frac{1 2x}{y}$.
- 3. Составить уравнение касательной и нормали к кривой $y = \frac{x^{29} + 6}{x^4 + 1}$ в точке с абсциссой $x_0 = 1$.

Вариант 15

a)
$$y = x^{15} + \frac{15}{x^2} - \sqrt{x} + (5x + x^3) \ln x^2$$
; 6) $y = \cos(10x + x^3) + 7^{arctgx}$;

B)
$$y = \frac{1+2x-x^2}{x+1}$$
; $y = \frac{\cos x}{1-\sin x} + 2\sin 4x + 4 + \ln(4+\sin 4x)$;

Д)
$$y = \arccos \frac{1}{2x^2} + (1 + \sqrt[3]{x})^3$$
.

- 2. Показать, что функция $y = tg \ln 3x$ удовлетворяет уравнению $xy' = 1 + y^2$.
- 3. Составить уравнение касательной и нормали к кривой $y = 2x + \frac{1}{x}$ в точке с абсциссой $x_0 = 1$.

1. Найти первые производные функций.

$$6) y = \frac{\cos x}{\sin^2 x} + \frac{\sin x}{\cos^2 x};$$

B)
$$y = \frac{x^3}{\sqrt{x^3 + 1}}$$
;

Γ)
$$y = \sqrt[3]{x^2 + \cos^2 x} + \ln^2 tg \, 2x + 7^{\ln^2 x}$$
;
 Д) $y = \arcsin e^{7x} + x \arccos x - \sqrt{2 - x^3}$

$$\mu$$
) $y = \arcsin e^{7x} + x \arccos x - \sqrt{2 - x^3}$

- 2. Показать, что функция $y = -\sqrt{\frac{2}{r^2}-1}$ удовлетворяет уравнению $1+y^2+xyy'=0.$
- 3. Составить уравнение касательной и нормали к кривой $y = -\frac{2(x^8 + 2)}{3(x^4 + 1)}$ в точке с абсциссой $x_0 = 1$.

Вариант 17

1. Найти первые производные функций.

a)
$$y = x^7 + \frac{7}{x^3} - \sqrt[3]{7x} + 2\sqrt{4x} + e^x \sin 2x$$
; 6) $y = (5 + x^3)^2 e^{-x}$; B) $y = \frac{4}{\sqrt[3]{x^2 + 5}}$;

Γ)
$$y = 7^{\sqrt{\cos x}} + \sqrt[3]{x + \sqrt[3]{x}}$$
; Д) $y = arctg \sqrt{\frac{3-x}{x-2}} + \cos(3^x) + \frac{\sin x}{1 + \ln\sin x}$.

- 2. Показать, что функция $y = \sqrt{\ln\left(\frac{1+e^x}{2}\right)^2 + 1}$ удовлетворяет уравнению $(1+e^x)yy'=e^x.$
- 3. Составить уравнение касательной и нормали к кривой $y = \frac{x^5 + 1}{x^4 + 1}$ в точке с абсциссой $x_0 = 1$.

Вариант 18

$$\Gamma$$
) $y = \frac{2\sin 5x}{1-\cos 3x} + 2tg^3(x^3+2);$ π) $y = \arcsin(\cos x^2) + x^2 + arctg^2 \frac{1}{x}$

- 2. Показать, что функция $y = \sqrt[3]{x \ln x 1}$ удовлетворяет уравнению $\ln x + y^3 3xy^2y' = 0$.
- 3. Составить уравнение касательной и нормали к кривой $y = \frac{x^{16} + 9}{1 5x^2}$ в точке с абсциссой $x_0 = 1$.

1. Найти первые производные функций.

a)
$$y = 7x^2 + \frac{x^5}{5} - \sqrt[5]{x} + \ln ctg^3 x$$
; 6) $y = \sin^2 6x + 3x^2$; B) $y = \frac{x^7}{x^5 - 2}$;

$$\Gamma$$
) $y = \frac{1 + e^{2x}}{1 - e^{4x}} + arctg(tg^2x + 2);$

д)
$$y = 2^{\frac{x}{1+x}} + 7^{\cos 2x} + \ln\left(x + \sqrt{x^2 + 2x + 3}\right) + \sqrt{3x} \arcsin x^2$$

- 2. Показать, что функция $y = a + \frac{7x}{ax+1}$, a = const удовлетворяет уравнению $y xy' = a(1 + x^2y')$.
- 3. Составить уравнение касательной и нормали к кривой $y = 3(\sqrt[3]{x} 2\sqrt{x})$ в точке с абсциссой $x_0 = 1$.

Вариант 20

a)
$$y = x^7 - \frac{x^6}{6} + \sqrt[6]{x} + 2\ln ctg \frac{x}{2}$$
; 6) $y = \sqrt{x} - arctg \sqrt{x} + \frac{\sqrt{x}}{\sqrt{x} + 1}$;

B)
$$y = \frac{x}{6(x+1)}$$
; Γ) $y = 3x\sin^3 x - \cos^3 x + \ln^2 \sin 3x$;

Д)
$$y = \arcsin(e^{-4x}) + 5^{\frac{1-x}{1+x}} + 3^{\cos 4x}$$
.

2.Показать, что функция $y = a \cdot tg \sqrt{\frac{a}{x}} - 1$, a = const удовлетворяет уравнению $a^2 + y^2 + 2x\sqrt{ax - x^2} \ y' = 0$.

3. Составить уравнение касательной и нормали к кривой $y = \frac{1}{3x+2}$ в точке с абсциссой $x_0 = 2$.

Вариант 21

1. Найти первые производные функций.

$$\Gamma$$
) $y = \ln^2 arctgx + arctg(7\sin 3x)$; д) $y = \sqrt{x + 2\sqrt{x}} + \sqrt{x^2 + 1} - \sqrt{x^2 - 1}$.

2. Показать, что функция $y = (x^2 + 1)e^{x^2}$ удовлетворяет уравнению $y' - 2xy = 2xe^{x^2}$.

3. Составить уравнение касательной и нормали к кривой $y = \frac{x}{x^2 + 1}$ в точке с абсциссой $x_0 = -2$.

Вариант 22

a)
$$y = 2 + \frac{5}{x^2} - \frac{3}{x^3} + \sqrt[4]{x^3} + 0.7^{x^5} + x\sqrt{x}(3\ln x - 2);$$
 6) $y = \ln tg\left(\frac{\pi}{4} + \frac{x}{2}\right) + tg\left(x^2 + 3\right);$

B)
$$y = \frac{x^2}{1+x^3}$$
; Γ) $y = \cos x + \sin^3 \frac{x}{3} + \frac{1+2\cos 3x}{1-\cos 2x}$; Π) $y = x^2 \arcsin(9x+2) + 0.9^{\sqrt{x}}$.

2. Показать, что функция $y = \sqrt[4]{\sqrt{x} + \sqrt{x+1}}$ удовлетворяет уравнению $8xy' - y = \frac{-1}{y^3\sqrt{x+1}}$.

3. Составить уравнение касательной и нормали к кривой $y = (x^2 - 3x + 3)/3$ в точке с абсциссой $x_0 = 3$.

Вариант 23

1. Найти первые производные функций.

$$\Gamma) \ \ y = tg\left(x^2 + \cos x\right) + \sqrt[3]{x} \arctan x + 15^{\ln^2 x}; \quad \Lambda) \ \ y = \frac{1}{2}\left(\sqrt{1 - x^2} + \arcsin x\right) + \sqrt{\frac{x}{2} - \sin \frac{x}{2}}.$$

2. Показать, что функция $y = \frac{2x}{x^3 + 1} + \frac{1}{x}$ удовлетворяет уравнению $x(x^3 + 1)y' + (2x^3 - 1)y = \frac{x^3 - 2}{x}$.

3. Составить уравнение касательной и нормали к кривой $y = \frac{2x}{x^2 + 1}$ в точке с абсциссой $x_0 = 1$.

Вариант 24

1. Найти первые производные функций.

$$\Gamma) \ \ y = x^2 \cos^2 x + 3tg^6 x + 7 + \sin^4 x + 5^{\cos x^2}; \qquad \qquad \text{II}) \ \ y = 4xarctg(2x + 9) + \ln \sqrt{\frac{1 + \sin x}{1 - \sin x}}.$$

2. Показать, что функция $y = e^{x+x^2} + 2e^x$ удовлетворяет уравнению $y' - y = 2xe^{x+x^2}$.

3. Составить уравнение касательной и нормали к кривой $y = -2(\sqrt[3]{x} + 3\sqrt{x})$ в точке с абсциссой $x_0 = 1$.

Вариант 25

a)
$$y = 3x^5 - \frac{1}{x^5} + \frac{1}{x^4} + 2 + 5^{\sin 3x}$$
; 6) $y = \sqrt{1 + x^2} + (1 + 9x)e^{-x^2}$; B) $y = \frac{x + \sqrt{x}}{x - 2\sqrt[3]{x}}$;

$$\Gamma$$
) $y = tgx + \frac{2}{3}tg^3x + \frac{1}{5}tg^5x + \ln^2\sin x$; Π) $y = \arccos\frac{9-x^2}{9+x^2} + x^3(x-5\cos x)^2$.

- 2. Показать, что функция $y = -x\cos x + 3x$ удовлетворяет уравнению $xy' = y + x^2 \sin x$.
- 3. Составить уравнение касательной и нормали к кривой $y = \frac{3x^2 + 1}{x^2 + 3}$ в точке с абсциссой $x_0 = 1$.

Расчетно-графическая работа №3 «Интегрирование функции»

Работа состоит из 5 заданий для 25 вариантов.

Вариант 1

Вычислить:

$$1. \int_{0}^{4} \frac{\sqrt{x}}{\sqrt{x} + 1} dx$$

$$2. \int \frac{\cos x}{4 + \sin^2 x} dx$$

$$3. \int \frac{dx}{(2x+1)\sqrt[3]{\ln^2(2x+1)}}$$

$$4. \int_{-3}^{5} \frac{dx}{\sqrt[3]{x+3}}$$

5. Найти площадь фигуры, ограниченной линиями $y = x^2$, $y = x^2/2$ и y = 2x.

Вариант 2

Вычислить:

1.
$$\int \frac{\sqrt[3]{\ln^2(1-x)}}{x-1} dx$$

2.
$$\int (x^2 - 3x + 1)^{15} \cdot (2x - 3) dx$$

$$3. \int_{4}^{5} \frac{dx}{(x-4)^2}$$

$$4. \int_{a}^{9} \frac{dx}{x \ln^{2} x}$$

5. Найти площадь фигуры, ограниченной линиями

$$y = x^{3/2}$$
, $x = 0$, $y = 4$.

Вариант 3

Вычислить:

1.
$$\int \frac{5x^2 - \sqrt{x} - \sqrt[3]{x^2} + 2}{\sqrt[6]{x}} dx$$

$$2. \int_{0}^{16} \frac{\sqrt{x}}{1 - \sqrt[4]{x}} dx$$

33

3.
$$\int_{1}^{2} \frac{x dx}{x-1}$$

$$4. \int_{0}^{2} e^{-5x} dx$$

5. Найти площадь фигуры, ограниченной линиями $y = x^3$, $y = \sqrt{x}$.

Вариант 4

Вычислить:

$$1. \int_{0}^{\frac{\pi}{2}} 5\sin^3 x \cos^2 x dx$$

$$2. \int \frac{\sqrt[5]{x^2} - 2x^3 + 4}{x\sqrt[5]{x}} dx$$

$$3. \int_{-1}^{0} \frac{dx}{\sqrt{(x+1)^3}}$$

4.
$$\int_{0}^{4} \frac{dx}{9x^2 + 1}$$

5. Найти площадь фигуры, ограниченной линиями $y = x^2$, y = 3 - x.

Вариант 5

Вычислить:

$$1. \int_0^1 \frac{\sqrt{x} + \sqrt[4]{x}}{\sqrt{x} + 1} dx$$

2.
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$$

$$4. \int_{5}^{1} \frac{x dx}{\sqrt[3]{x^2 + 2}}$$

$$3. \int \frac{\sqrt{x} - 3\sqrt{x^3} + 2}{x^2} dx$$

5. Найти площадь фигуры, ограниченной линиями $y = x^2$ и $y = 2 - x^2$.

Вариант 6

Вычислить:

1.
$$\int_{3}^{3} \frac{2}{3} \cdot \sqrt{9 - x^2} dx$$
 2. $\int_{3}^{8} \frac{(5x + 2)dx}{\sqrt[3]{x}}$

2.
$$\int_{0}^{8} \frac{(5x+2)dx}{\sqrt[3]{x}}$$

$$3. \int \frac{3x^2 + 1}{x^3 + x - 10} dx$$

3.
$$\int \frac{3x^2 + 1}{x^3 + x - 10} dx$$
 4.
$$\int (x^2 - 3x + 1)^{15} \cdot (2x - 3) dx$$

5. Найти площадь фигуры, ограниченной линиями y = 3x, $y = 3\sqrt{x}$.

Вариант 7

Вычислить:

1.
$$\int_{2}^{7} \frac{\sqrt{x+2}}{\sqrt{x+2}+1} dx$$

1.
$$\int_{2}^{7} \frac{\sqrt{x+2}}{\sqrt{x+2}+1} dx$$
 2. $\int \frac{(2\sqrt{x}+1)^{3}}{x\sqrt{x}} dx$

3.
$$\int_{0}^{e^{-2}} \frac{dx}{x \ln^{3} x}$$
 4.
$$\int_{0}^{1} \frac{dx}{4x^{2} + 1}$$

4.
$$\int_{0}^{1} \frac{dx}{4x^2 + 1}$$

5. Найти площадь фигуры, ограниченной, ограниченной линиями

34

$$y = x^2$$
, $y = 2 - x^2$.

Вычислить:

$$1. \int_{0}^{1} \frac{x dx}{\sqrt{4 - 3x^2}}$$

1.
$$\int_{0}^{1} \frac{x dx}{\sqrt{4-3x^2}}$$
 2. $\int_{-1}^{0} \frac{dx}{\sqrt{(x+1)^5}}$

$$3. \int \frac{dx}{x \cdot (2 + \ln x)}$$

$$4. \int \frac{x^2}{7+3x^3} dx$$

5. Найти площадь фигуры, ограниченной линиями $y = -x^2$ и y + x + 2 = 0.

Вариант 9

Вычислить:

1.
$$\int_{1}^{2} \frac{dx}{2 + \sqrt[4]{x - 1}}$$
 2. $\int_{1}^{e} \frac{\ln x dx}{x^3}$

$$2. \int_{1}^{e} \frac{\ln x dx}{x^3}$$

3.
$$\int_{-2}^{7} \frac{dx}{\sqrt{x+2}}$$

4.
$$\int \frac{2x^3 - 3\sqrt{x^5} + 3}{x^4 \sqrt{x}} dx$$

5. Найти площадь фигуры, ограниченной линями

$$y = x + 1$$
, $y = \cos x$, $y = 0$.

Вариант 10

Вычислить:

1.
$$\int_{\sqrt{2}}^{2} x \sqrt{4-x^2} dx$$

$$2. \int \frac{\sqrt[7]{x^6} - 2x^2 + 3}{x} dx$$

3.
$$\int_{0}^{3} \frac{dx}{(x-3)^{3}}$$
 4.
$$\int_{1}^{2} x^{2} e^{-x^{3}} dx$$

$$4. \int_{1}^{2} x^{2} e^{-x^{3}} dx$$

5. Найти площадь фигуры, ограниченной линями x + y - 7 = 0, y = 6/x.

35

Вариант 11

Вычислить:

$$1. \int_{0}^{64} \frac{\sqrt{x}}{\sqrt[3]{x} - 1} dx$$

$$2. \int_{-3}^{5} \frac{dx}{\sqrt[3]{x-5}}$$

$$3. \int_{0}^{1} x^{2} e^{x^{3}} dx$$

$$4. \int \frac{\cos^2 x + 3\cos x - 2}{\cos^2 x} dx$$

5. Найти площадь фигуры, ограниченной линией $y = 6x - x^2$ и осью Ox.

Вариант 12

Вычислить:

$$1. \int_{0}^{4} \frac{dx}{\sqrt{x} + 1}$$

1.
$$\int_{0}^{4} \frac{dx}{\sqrt{x+1}}$$
 2. $\int \frac{3x^4 - \sqrt[3]{x^2} + 1}{x^2} dx$

5. Найти площадь фигуры, ограниченной линями $y = x^3$, y = 1, x = 0.

Вариант 13

Вычислить:

1.
$$\int_{0}^{64} \frac{\sqrt[3]{x}}{1 - \sqrt{x}} dx$$
 2. $\int_{1}^{2} \frac{x dx}{x - 2}$

$$2. \int_{1}^{2} \frac{x dx}{x - 2}$$

3.
$$\int_{0}^{1} e^{10x} dx$$

$$4. \int \frac{\sqrt[5]{x} - 2x^3 + 4}{x^2} dx$$

5. Найти площадь фигуры, ограниченной $y = x^{3/2}$, x = 0, y = 2.

Вариант 14

Вычислить:

$$1. \qquad \int \frac{3xdx}{4x^2 + 1}$$

2.
$$\int_{0}^{\pi/2} (6\cos 2x - 1) dx$$

$$3. \int_{-1}^{0} \frac{dx}{\sqrt[5]{(x+1)^3}}$$

4.
$$\int_{1}^{8} x(3+x-\sqrt[3]{x}) dx$$

5. Найти площадь фигуры, ограниченной x + y - 4 = 0, y = 3/x.

Вариант 15

Вычислить:

1.
$$\int_{0}^{64} \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x} + 1} dx$$

1.
$$\int_{0}^{64} \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x} + 1} dx$$
 2.
$$\int_{0}^{1/7} (7x + 1)e^{7x} dx$$

3.
$$\int_{0}^{2} \frac{dx}{\sqrt{4-x^2}}$$
 4. $\int_{6}^{+\infty} \frac{dx}{\sqrt[3]{x+2}}$

4.
$$\int_{6}^{+\infty} \frac{dx}{\sqrt[3]{x+2}}$$

5. Найти площадь фигуры, ограниченной линиями y = 2/x и y + x = 3.

Вариант 17

Вычислить:

1.
$$\int_{-1}^{62} \frac{\sqrt{x+2}}{\sqrt[3]{x+2}+1} dx$$

$$2. \int_{-1/2}^{1/2} (4x+2)e^{2x} dx$$

3.
$$\int_{1}^{e^{2}+1} \frac{dx}{(x-1)\ln^{3}(x-1)}$$
 4.
$$\int_{0}^{+\infty} \frac{dx}{x^{2}+4}$$

4.
$$\int_{0}^{+\infty} \frac{dx}{x^2 + 4}$$

5. Найти площадь фигуры, ограниченной $y = \sin 2x$, y=1, $x=\pi/2$, $x \ge \pi/4$.

Вариант 18

Вычислить:

$$1. \int_{0}^{2} \frac{x^2 dx}{\sqrt{1+x^3}}$$

1.
$$\int_{0}^{2} \frac{x^{2} dx}{\sqrt{1+x^{3}}}$$
 2. $\int_{0}^{\pi/6} (3\sin 3x + 2) dx$

3.
$$\int_{-7}^{1} \frac{dx}{\sqrt[3]{(x-1)^5}}$$

$$4. \int_{e}^{7} \frac{dx}{x \ln^{3} x}$$

5. Найти площадь фигуры, ограниченной линиями $y = x^2 + 8x - 12$ и $y = 18x - x^2$.

Вариант 16

Вычислить:

1.
$$\int_{1}^{5} \frac{\sqrt{3x+1}}{\sqrt{3x+1}+1} dx$$

$$2. \int_{1}^{9} \frac{\ln x dx}{x}$$

3.
$$\int_{0}^{8} \frac{2dx}{\sqrt[3]{x-8}}$$

4.
$$\int_{-1}^{0} (6e^{-3x} + 2) dx$$

5. Найти площадь фигуры, ограниченной линиями $y = -x^2 + 4x - 3$ и y = 1.

Вариант 19

Вычислить:

1.
$$\int_{1}^{2} \frac{dx}{2 + \sqrt[5]{x - 1}}$$

$$2. \int_{1}^{e^2} \frac{\ln x dx}{x}$$

$$3. \int_{-1}^{7} \frac{dx}{\sqrt[3]{x-7}}$$

$$4. \int \frac{x\sqrt{x} - \sqrt{x^3} + 1}{\sqrt[3]{x}} dx$$

5. Найти площадь фигуры, ограниченной линиями $y = e^x$, y=0.5, x=0, x=2.

Вариант 20

Вычислить:

$$1. \int_{1}^{3} x\sqrt{7+2x^2} \, dx$$

$$2. \int_{0}^{\pi/2} (3x\cos 2x + 2) dx$$

$$3. \int_{1}^{3} \frac{dx}{(x-1)^{6}}$$

$$4. \int_{1}^{0} (x^3 + e^{-5x}) dx$$

5. Найти площадь фигуры, ограниченной линиями $y = (x-1)^3$, y=1, x=0.

Вариант 21

Вычислить:

1.
$$\int_{0}^{1} \frac{\sqrt[3]{x}}{\sqrt{x}+1} dx$$

$$2. \int_{-3}^{-4} (2x - x^2 + 4/x)) dx$$

$$3. \int_{-5}^{27} \frac{dx}{\sqrt[5]{x+5}}$$

$$4. \int \frac{\sqrt[3]{x^2} - 2x^5 + 3}{x} dx$$

5. Найти площадь фигуры, ограниченной линиями $y = x^2$, $y = x^3$, x = -2 и x = 1.

Вариант 22

Вычислить:

$$1. \int_{1}^{64} \frac{\sqrt[3]{x}}{1 - \sqrt{x}} dx$$

2.
$$\int_{1}^{e^{2}} (x+3-10/x) dx$$

$$3. \int_{0}^{1/4} \frac{dx}{x \ln x}$$

4.
$$\int_{0}^{-1} (e^{-4x} - 3x) dx$$

5. Найти площадь фигуры, ограниченной линиями $y = x^2$, $y = \sqrt{8x}$.

Вариант 23

Вычислить:

1.
$$\int_{0}^{\pi} (\sin 2x - \cos 3x) dx$$
 2. $\int_{1}^{10} \frac{dx}{\sqrt{(10-x)^3}}$

$$2. \int_{1}^{10} \frac{dx}{\sqrt{(10-x)^3}}$$

3.
$$\int_{0}^{\sqrt{3}} \frac{dx}{x^2 - 16}$$

3.
$$\int_{0}^{\sqrt{3}} \frac{dx}{x^2 - 16}$$
 4.
$$\int \frac{3x^2 - \sqrt[5]{x} + 2}{x} dx$$

5. Найти площадь фигуры, ограниченной линиями $y = x^2$, y = 6 - x.

Вариант 24

Вычислить:

1.
$$\int \frac{\sqrt[6]{x^5} - 5x^2 + 3}{x} dx$$

1.
$$\int_{-\infty}^{6\sqrt{x^5}} \frac{-5x^2 + 3}{x} dx$$
 2.
$$\int_{0}^{\pi/4} (2x - 7 + 4\sin 2x) dx$$

3.
$$\int_{2}^{29} \frac{dx}{(x-2)^{2/3}}$$

4.
$$\int_{a^2}^{16} \frac{dx}{x\sqrt{\ln^5 x}}$$

5. Найти площадь фигуры, ограниченной линиями y = cosx, y = x, x = 0.

Вариант 25

Вычислить:

1.
$$\int_{1}^{64} \frac{\sqrt{x^3} + \sqrt[3]{x}}{\sqrt{x} + 1} dx$$

2.
$$\int_{0}^{1/3} (3x-2-e^{3x})dx$$

39

3.
$$\int_{0}^{1} \frac{dx}{\sqrt{9-x^2}}$$

4.
$$\int_{10}^{29} \frac{dx}{\sqrt[3]{(x-2)^4}}$$

5. Найти площадь фигуры, ограниченной линиями y = 4x и $y = x^3$.

Вычислить:

1.
$$\int_{0}^{2} x^{2} \sqrt{16 - x^{3}} dx$$

1.
$$\int_{0}^{2} x^{2} \sqrt{16 - x^{3}} dx$$
 2. $\int_{-\pi/3}^{0} (3x + 1 - \cos 3x) dx$

$$3. \int_{1}^{3/2} \frac{dx}{(2x-3)^3}$$

3.
$$\int_{1}^{3/2} \frac{dx}{(2x-3)^3}$$
 4.
$$\int \frac{2x^3 - \sqrt{x^5} + 1}{\sqrt{x}} dx$$

5. Найти площадь фигуры, ограниченной линиями $y = 2x - x^2$ и y = 0.

Расчетно-графическая работа №4 «Дифференциальные уравнения»

Работа состоит из 5 заданий для 10 вариантов.

Вариант 1

1. Решите дифференциальное уравнение с разделяющимися переменными:

a)
$$y' = 2x + 1$$
.

б)
$$y' + y = 5$$
.

B)
$$(1+y)dx - (1-x)dy = 0$$
.

$$\Gamma) 4xdx - 3ydy = 3x^2ydy - 2xy^2dx.$$

- 2. Материальная точка массой m=2r без начальной скорости медленно погружается в жидкость. Сила сопротивления жидкости пропорционально скорости погружения. Найти скорость точки через 1 сек. после начала погружения, если коэффициент пропорциональности $k=0,002\ kr/c$.
- 3. Кривая проходит через точку (2; -1) и обладает тем свойством, что угловой коэффициент касательной в любой ее точке пропорционален квадрату ординаты точки касания с коэффициентом пропорциональности k=3. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка $y''' = \sin x$, y(0) = 1, y'(0) = 0, y''(0) = 0.
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$y'' + 4y = 0$$
.

$$6) y'' - 10y' + 25y = 0.$$

$$\mathbf{B}) \ y'' + 3y' + 2y = 0.$$

Вариант 2

1. Решите дифференциальное уравнение с разделяющимися переменными:

a)
$$y' = 3x + 2$$
.

6)
$$y' + 2y = 3$$
.

B)
$$(2 + y)dx - (3 - x)dy = 0$$
.

$$\Gamma) x \sqrt{1 + y^2} + y y' \sqrt{1 + x^2} = 0.$$

- 2. Моторная лодка движется в спокойной воде со скоростью $v_0 = 12$ км/ч. На полном ходу ее мотор был выключен и через 10 с скорость лодки уменьшилась до $v_1 = 6$ км/ч. Сила сопротивления воды пропорциональна скорости движения лодки. Найти скорость лодки через 1 мин после остановки мотора.
- 3. Кривая проходит через точку (2; -1) и обладает тем свойством, что угловой коэффициент касательной в любой ее точке пропорционален квадрату ординаты точки касания с коэффициентом пропорциональности k = 3. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка $y''' = 6/x^3$, y(1) = 0, y'(1) = 5, y''(1) = 1.
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$y'' - y' - 2y = 0$$
.

б)
$$y'' + 9y = 0$$
.

B)
$$y'' + 4y' + 4y = 0$$
.

- 1. Решите дифференциальное уравнение с разделяющимися переменными:
 - a) y' = x + 5.

б)
$$y' + 4y = 6$$
.

B)
$$(7 + y)dx - (5 - x)dy = 0$$
.

$$\Gamma \int \sqrt{3 + y^2} \, dx + y dy = x^2 y dy.$$

2. Пуля, двигаясь со скоростью $v_0 = 400$ м/с, углубляется в достаточно толстую стену. Сила сопротивления стены сообщает пуле отрицательное уско-

рение, пропорциональное квадрату ее скорости. Найти скорость пули через 0,001с после вхождения пули в стену, если коэффициент пропорциональности $k=7\text{M}^{-1}$.

- 3. Кривая проходит через точку (1; 2) и обладает тем свойством, что отношение ординаты любой ее точки к абсциссе пропорционально угловому коэффициенту касательной к этой кривой, проведенной в той же точке, с коэффициентом пропорциональности k = 3. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка

$$y'' = 4\cos 2x$$
, $y(0) = 1$, $y'(0) = 3$.

5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$y'' - 4y' = 0$$
.

б)
$$y'' - 4y' + 13y = 0$$
.

B)
$$y'' - 3y' + 2y = 0$$
.

Вариант 4

1. Решите дифференциальное уравнение с разделяющимися переменными:

a)
$$y' = x - 2$$
.

6)
$$y' + 2y = 7$$
.

B)
$$(3 - y)dx - (2 + x)dy = 0$$
.

$$\Gamma) (e^{2x} + 5) dy + y e^{2x} dx = 0.$$

2. Материальная точка массой m=1г движется прямолинейно. На нее действует в направлении движения сила, пропорциональная времени, с коэффициентом пропорциональности $k_1 = 2 \cdot 10^{-5} \, \text{кг} \cdot \text{м/c}^3$ и сила сопротивления среды, пропорциональная скорости, с коэффициентом пропорциональности $k_2 = 0{,}003$ кг/с. Найти скорость точки через 3с после начала движения, если начальная скорость точки была равна нулю.

- 3. Кривая проходит через точку (1; 5) и обладает тем свойством, что отрезок, отсекаемый на оси ординат любой касательной, равен утроенной абсциссе точки касания. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка $y'''=e^{2x}$, $y(0)=\frac{9}{8}$, $y'(0)=\frac{1}{4}$, y''(0)=-1/2.
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$y'' - 6y' - 8y = 0$$
.

6)
$$y'' + 4y' + 5y = 0$$
.

B)
$$y'' + 5y' = 0$$
.

- 1. Решите дифференциальное уравнение с разделяющимися переменными:
 - a) y' = x 7.
 - б) y' + 3y = 7.
 - B) (4-y)dx (5+x)dy = 0.
 - $\Gamma) \ x\sqrt{5+y^2} \ dx + y\sqrt{4+x^2} dy = 0.$
- 2. В сосуде 100 л водного раствора соли. В сосуд втекает чистая вода со скоростью $q = 5\pi/m$ ин, а смесь вытекает с той же скоростью, причем концентрация раствора с помощью перемешивания поддерживается равномерной. В начальный момент в растворе содержалось $m_0 = 10$ кг соли. Сколько соли будет содержаться в сосуде через 20 мин после начала процесса?
- 3. Кривая проходит через точку (2; 4) и обладает тем свойством, что отрезок, отсекаемый на оси абсцисс касательной, проведенной в любой точке кривой, равен кубу абсциссы точки касания. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка $y'' = x + \sin x$, y(0) = -3, y'(0) = 0.
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$4y'' - 8y' - 3y = 0$$
.

б)
$$y'' - 3y' = 0$$
.

B)
$$y'' - 2y' + 10y = 0$$
.

1. Решите дифференциальное уравнение с разделяющимися переменными:

a)
$$y' = x + 2$$
.

б)
$$y' + 7y = 3$$
.

B)
$$(7 - y)dx - (2 + x)dy = 0$$
.

$$\Gamma) \ y\sqrt{4+e^x} \ dy - e^x dx = 0.$$

- 2. Материальная точка массой m = 3r без начальной скорости медленно погружается в жидкость. Сила сопротивления жидкости пропорционально скорости погружения. Найти скорость точки через 2 сек. после начала погружения, если коэффициент пропорциональности $k = 0{,}003 \text{ кг/c}$.
- 3. Кривая проходит через точку (1; -2) и обладает тем свойством, что угловой коэффициент касательной в любой ее точке пропорционален квадрату ординаты точки касания с коэффициентом пропорциональности k = 2. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка $y''' = \sqrt{x} \sin 2x$, y(0) = -1/8, $y'(0) = \frac{\cos 2}{8}$, y''(0) = 1/2.
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$y'' - y' - 2y = 0$$
.

$$6) y'' + 9y = 0.$$

B)
$$y'' + 4y' + 4y = 0$$
.

Вариант 7

1. Решите дифференциальное уравнение с разделяющимися переменными:

a)
$$y' = x - 4$$
.

6)
$$y' + 2y = 8$$
.

B)
$$(3 - y)dx - (5 + x)dy = 0$$
.

$$\Gamma) 2xdx - 2xydy = x^2ydy - 2xy^2dx.$$

- 2. Моторная лодка движется в спокойной воде со скоростью $v_0 = 12$ км/ч. На полном ходу ее мотор был выключен и через 8 с скорость лодки уменьшилась до $v_1 = 6$ км/ч. Сила сопротивления воды пропорциональна скорости движения лодки. Найти скорость лодки через 1 мин после остановки мотора.
- 3. Кривая проходит через точку (2; 1) и обладает тем свойством, что произведение углового коэффициента касательной в любой ее точке на сумму координат точки касания равно удвоенной ординате этой точки. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка $y'''=1+cos2x,\ y(0)=1,\ y'(0)=-1/8,\ y''(0)=0.$
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$9y'' + 6y' + y = 0$$
.

б)
$$y'' - 4y' - 21y = 0$$
.

B)
$$y'' + 121y = 0$$
.

- 1. Решите дифференциальное уравнение с разделяющимися переменными:
 - a) y' = x + 6.

6)
$$y' - 3y = 8$$
.

B)
$$(5-y)dx - (3+x)dy = 0$$
.

$$\Gamma) y lny + xy' = 0.$$

2. Пуля, двигаясь со скоростью $v_0 = 400$ м/с, углубляется в достаточно толстую стену. Сила сопротивления стены сообщает пуле отрицательное ускорение, пропорциональное квадрату ее скорости. Найти скорость пули через

0,003с после вхождения пули в стену, если коэффициент пропорциональности k = 5 м $^{-1}$.

- 3. Кривая проходит через точку (2; 1) и обладает тем свойством, что отношение ординаты любой ее точки к абсциссе пропорционально угловому коэффициенту касательной к этой кривой, проведенной в той же точке, с коэффициентом пропорциональности k = 2. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка $y''' = e^{x/2} + 1$, y(0) = 8, y'(0) = 5, y''(0) = 2.
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$y'' - y = 0$$
.

$$6) 4y'' + 8y' - 5y = 0.$$

B)
$$y'' - 6y' + 10y = 0$$
.

Вариант 9

1. Решите дифференциальное уравнение с разделяющимися переменными:

a)
$$y' = x + 8$$
.

б)
$$y' - y = 4$$
.

B)
$$(7 - y)dx - (2 + x)dy = 0$$
.

$$\Gamma) \ (1 + e^x) \cdot y' = y e^x.$$

- 2. Материальная точка массой m=1 г движется прямолинейно. На нее действует в направлении движения сила, пропорциональная времени, с коэффициентом пропорциональности $k_1 = 2 \cdot 10^{-5} \,\mathrm{kr} \cdot \mathrm{m/c}^3$ и сила сопротивления среды, пропорциональная скорости, с коэффициентом пропорциональности $k_2 = 0{,}003$ кг/с. Найти скорость точки через 2с после начала движения, если начальная скорость точки была равна нулю.
- 3. Кривая проходит через точку (3; 4) и обладает тем свойством, что отрезок, отсекаемый на оси ординат любой касательной, равен утроенной абсциссе точки касания. Найти уравнение кривой.

- 4. Найдите частное решение дифференциального уравнения второго порядка $y''=1-cos6x,\ y(0)=-rac{\pi^2}{16},\ y'(0)=0.$
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$y'' - 3y - 18y = 0$$
.

б)
$$y'' - 6y' = 0$$
.

B)
$$y'' + 2y' + 5y = 0$$
.

- 1. Решите дифференциальное уравнение с разделяющимися переменными:
 - a) y' = x + 7.
 - б) y' 7y = 1.
 - B) (2-y)dx (2+x)dy = 0.
 - $\Gamma) \ \sqrt{1 x^2} y' + x y^2 + x = 0.$
- 2. В сосуде 50 л водного раствора соли. В сосуд втекает чистая вода со скоростью $q = 5\pi/m$ ин, а смесь вытекает с той же скоростью, причем концентрация раствора с помощью перемешивания поддерживается равномерной. В начальный момент в растворе содержалось $m_0 = 5$ кг соли. Сколько соли будет содержаться в сосуде через 10 мин после начала процесса?
- 3. Кривая проходит через точку (1; 2) и обладает тем свойством, что отрезок, отсекаемый на оси абсцисс касательной, проведенной в любой точке кривой, равен кубу абсциссы точки касания. Найти уравнение кривой.
- 4. Найдите частное решение дифференциального уравнения второго порядка $y'' = \cos x + e^{-x}$, $y(0) = -e^{-\pi}$, y'(0) = 1.
 - 5. Решите линейные дифференциальные уравнения второго порядка:

a)
$$6y'' + 7y' - 3y = 0$$
.

б)
$$y'' + 16y = 0$$
.

B)
$$4y'' - 4y' + y = 0$$
.

Расчетно-графическая работа №5 «Вероятность события. Случайная величина»

Работа состоит из восьми (семи) задач для 25 вариантов.

Вариант 1

- 1. Вероятность того, что день будет дождливым равна 0,46. Какова вероятность того, что дождя не будет?
- 2. Из слова КАЛЬКУЛЯТОР выбирается одна буква. Какова вероятность, что это буква Л?
- 3. Из карточек с буквами С,О,И,Т,К,А, наугад последовательно берут 5. Какова вероятность того, что получится слово «ТАКСИ»?
- 4. Колода в 36 карт делится пополам. Какова вероятность того, что все дамы будут в одной половине?
- 5. Какова вероятность того, что при подбрасывании игральной кости выпадет не более трёх очков?
- 6. В партии из 18 деталей находится 4 бракованных. Наугад выбирается 7 деталей. Найти вероятность того, что среди взятых деталей три окажутся стандартными.
- 7. В первой урне 4 красных и 6 чёрных шаров. Во второй 5 красных и 5 чёрных шаров. Из каждой урны не глядя берут по одному шару. Какова вероятность того, что они оба красные?
- 8. Какова вероятность того, что выбранное наугад число от 32 до 100 не содержит цифры 6?

- 1. Вероятность всхожести семени 0,67. Какова вероятность того, что семя не взойдёт?
- 2. Из слова КОНСПЕКТ выбирается одна буква. Какова вероятность, что это буква К?

- 3. Наугад в ряд раскладываются карточки с буквами А, Г, Н, К, И. Какова вероятность того, что составится слово «КНИГА»?
- 4. 10 шаров распределены по 4 ящикам. Какова вероятность того, что в первом 1 шар, во втором два, в третьем 3 шара, а в четвертом четыре?
- 5. Бросают игральную кость один раз. Какова вероятность того, что выпадет число, не меньше двух?
- 6 .В ящике 12 стандартных и 4 бракованных детали. Не глядя берут 6. Найти вероятность того, что из взятых деталей три окажутся бракованными.
- 7. В первой урне 7 белых и 5 чёрных шаров. Во второй 3 белых и 5 чёрных шаров. Не глядя из каждой урны берут по одному шару. Какова вероятность того, что они оба чёрного цвета?
- 8. Какова вероятность того, что выбранное наугад число от 11 до 63 кратно 6?

- 1. Вероятность безупречной работы двигателя равна 0,992. Какова вероятность его поломки?
- 2. Из слова СТУДЕНТ выбирается одна буква. Какова вероятность, что это буква Т?
- 3. На полку ставят 4-х томное издание. Какова вероятность того, что 1 том стоит первым, а четвертый- четвертым?
- 4. Колода в 36 карт делится пополам. Какова вероятность того, что три дамы будут в одной половине?
- 5 В сборочный цех завода поступают детали из 4-х цехов. Вероятность того, что деталь изготовлена первым цехом 0,12, вторым 0,3, третьим 0,4. Какова вероятность того, что деталь изготовлена в четвёртом цехе?
- 6. В первой урне 3 красных и 5 чёрных шаров. Во второй 5 красных и 2 чёрных шаров. Из каждой урны не глядя берут по одному шару. Какова вероятность того, что из первой урны взят красный шар, а из второй чёрный ?

- 7. Карточки с буквами А,Д,И,Е,В,О,Р,Ь сложены в коробку. Какова вероятность того, что вынимая пять карточек последовательно одну за другой получится слово «ДВЕРЬ»?
- 8. Какова вероятность того, что выбранное наугад число от 1 до 88 не содержит цифры 7?

- 1. Вероятность попадания в мишень при выстреле равна 0,872. Какова вероятность промаха?
- 2. Из слова СТАТИСТИКА выбирается одна буква. Какова вероятность, что это буква T?
- 3. На полку ставят 5-ти томное издание. Какова вероятность того, что первый том стоит первым, а четвертый- четвертым?
- 4. Колода в 36 карт делится пополам. Какова вероятность того, что три туза будут в одной половине?
- 5. В сборочный цех завода поступают детали из 3-х цехов. Вероятность того, что деталь изготовлена первым цехом 0,12, третьим 0,4. Какова вероятность того, что деталь изготовлена во втором цехе?
- 6. В первой урне 4 красных и 5 чёрных шаров. Во второй 6 красных и 2 чёрных шаров. Из каждой урны не глядя берут по одному шару. Какова вероятность того, что из первой урны взят красный шар, а из второй чёрный ?
- 7. Карточки с буквами Е,В,О,Р,Ь,Д сложены в коробку. Какова вероятность того, что вынимая четыре карточки последовательно одну за другой получится слово «ДВОР»?
- 8. Какова вероятность того, что выбранное наугад число от 1 до 100 содержит цифру 2?

Вариант 5

1. Вероятность того, что в момент обращения в кассу, билет на данный поезд есть, равна 0, 87. Какова вероятность того, что билетов нет?

- 2. Из слова МАТЕМАТИКА выбирается одна буква. Какова вероятность, что это буква А?
- 3. На полку ставят 5-ти томное издание. Какова вероятность того, что поставят по порядку?
- 4. Колода в 36 карт делится пополам. Какова вероятность того, что два туза будут в одной половине?
- 5. В сборочный цех завода поступают детали из 3-х цехов. Вероятность того, что деталь изготовлена первым цехом 0,34, третьим 0,4. Какова вероятность того, что деталь изготовлена во втором цехе?
- 6. В первой урне 4 красных и 5 чёрных шаров. Во второй 6 красных и 2 чёрных шаров. Из каждой урны не глядя берут по одному шару. Какова вероятность того оба красные?
- 7. Карточки с буквами Е, В, О, Р, Ь, А сложены в коробку. Какова вероятность того, что вынимая 4 карточки последовательно одну за другой получится слово «ВЕРА»?
- 8. Какова вероятность того, что выбранное наугад число от 1 до 100 кратно 5?

- 1. Вероятность того, что лето будет жарким 0,56. Найти вероятность того, что лето будет холодным.
- 2. Из слова ВЕРОЯТНОСТЬ выбирается одна буква. Какова вероятность, что это буква O?
- 3. Какова вероятность, что из 8 рабочих одной бригады троих отправят на работу в подшефный детский садик?
- 4. В урне 4 белых и 7 черных шаров. Наугад взяты два. Какова вероятность того, что оба белые?
- 5. Игральная кость бросается 1 раз. Какова вероятность того, что: появится простое число очков? выпадет число очков не менее 5?

- 6. Каждая буква слова «ТОСКА» написана на отдельных карточках. Вынимая последовательно одну за другой, составляется слово из 3 букв. Какова вероятность того, что это слово «КОТ»?
- 7. В первом ящике 3 стандартных и 5 бракованных деталей. Во втором 5 бракованных и 2 стандартных деталей. Из каждого ящика наугад берут по одной. Какова вероятность того, что они обе стандартные?
- 8. Какова вероятность того, что выбранное наугад число от 1 до 100 содержит цифру 4?

- 1. Вероятность того, что в данном справочнике есть нужная формула, равна 0,63. Какова вероятность того, что в данном справочнике формула отсутствует?
- 2. Из слова РАЗМЕЩЕНИЕ выбирается одна буква. Какова вероятность, что это буква Е?
- 3. В одном ящике 6 белых и 4 красных шара. В другом- 7 белых и 3 красных шара. Из каждого ящика наугад берут по одному. Какова вероятность того, что оба белого цвета?
- 4. Из шести карточек «К», «Р», «С», «Л», «Е», «О» наугад выбирают одну за другой и располагают в ряд. Какова вероятность того, что получится слово «КРЕСЛО»?
- 5. Из 100 деталей 5 бракованных. Наугад берут одну. Какова вероятность того, что она стандартная?
- 6. Игральная кость бросается 1 раз. Какова вероятность того, что: 1) появится нечетное число очков; 2) выпадет число очков не более 5?
- 7. Колода в 36 карт делится пополам. Какова вероятность того, что короли будут в одной половине?
- 8. Какова вероятность того, что выбранное наугад число от 10 до 100 не содержит цифры 3?

- 1. Вероятность клёва рыбы в данном месте равна 0,341. Какова вероятность того, что рыба не клюнула?
- 2. Из слова ПЕРЕСТАНОВКА выбирается одна буква. Какова вероятность, что это буква Е?
- 3. Из двух ящиков берут наугад по одному шару. Какова вероятность того, что из первого взят белый, а из второго чёрный, если в первом 6 белых и 4 черных, а во втором 7 белых и 3 черных?
- 4. Какова вероятность того, что выбранное наугад число от 1 до 100 не содержит цифры 6?
- 5. При открытии кодового замка забыты 3 последние цифры из четырех. Какова вероятность того, что первая наугад набранная комбинация будет правильной при условии, что все цифры разные.
- 6. Из карточек «Н», «Р», «С», «Л», «Ё», «О» наугад выбирают последовательно четыре и располагают в ряд. Какова вероятность того, что получится слово «ОСЁЛ»?
- 7. Какова вероятность, что вытащенная из колоды карта бубновая? С числом очков больше 4?
- 8. Какова вероятность того, что выбранное наугад число от 1 до 100 простое?

- 1. Вероятность того, что данный телевизор выдержит гарантию, равна 0, 768. Какова вероятность, что он не выдержит гарантийный срок?
- 2. Из слова СОЧЕТАНИЕ выбирается одна буква. Какова вероятность, что это буква E?
- 3. Из двух ящиков берут наугад по одному шару. Какова вероятность того, что из первого взят белый, а из второго чёрный, если в первом 4 белых и 5 черных, а во втором 6 белых и 3 черных?

- 4. Какова вероятность того, что выбранное наугад число от 1 до 100 не содержит цифры 0?
- 5. При открытии кодового замка забыты 2 последние цифры из четырех. Какова вероятность того, что первая наугад набранная комбинация будет правильной при условии, что все цифры разные.
- 6. Из карточек «Н», «Р», «С», «Л», «Е», «О» наугад выбирают последовательно четыре и располагают в ряд. Какова вероятность того, что получится слово «СЕЛО»?
- 7. Какова вероятность, что вытащенная из колоды карта крести? С числом очков не больше 4?
- 8. Какова вероятность того, что выбранное наугад число от 10 до 100 кратно 8?

- 1. Из колоды в 36 карт вынимаются наугад 2 карты. Найти вероятность того, что вынуты карты: туз и одно десятка.
- 2. Найти вероятность того, что наудачу выбранное целое число положительно, число делится на 2 или на 3.
- 3. В партии из 10 изделий 4 бракованных. Определить вероятность того, что среди выбранных наудачу для проверки 6 изделий ровно два окажутся бракованными.
- 4. Вероятности попадания в цель при стрельбе из трех орудий соответственно равны: p=0,8; p=0,7; p=0,9. Найти вероятность хотя бы одного попадания в цель при одном залпе всех орудий.
- 5. В урне 30 шаров, из них 5 черных и остальные белые. Вынимаются один за другим 3 шара подряд. Какова вероятность того, что будет вынуто два белых и один черный шар?
- 6. Какова вероятность того, вынутые из колоды в 36 листов 3 карты подряд появятся в последовательности: пиковый туз, пиковый король, пиковая дама?

7. В урне находятся 12 белых и 8 черных шаров. Найти вероятность того, что среди наугад взятых 5 шаров 3 будут черными?

Вариант 11

- 1. На каждой из 10 одинаковых карточек напечатана одна из следующих букв: Т, С, Н, М, И, К, О, Л, У, П. Карточки тщательно перемешаны. Найти вероятность того, что на семи вынутых по одной и расположенных «в одну линию» карточках можно прочесть слово «СПУТНИК».
- 2. В ящике имеется 5 деталей, изготовленных заводом № 1 и 10 деталей, изготовленных заводом №2. Сборщик последовательно вынимает из ящика детали одну за одной. Найти вероятность того, что второй будет извлечена деталь, изготовленная заводом №1.
- 3. Круговая мишень состоит из трех зон. Вероятность попадания в первую зону -0.12, во вторую -0.23, в третью -0.3. Найти вероятность промаха.
- 4. Для некоторой местности среднее число дождливых дней в августе равно 15. Чему равна вероятность того, что в первые два дня августа не будет ни одного дождливого дня?
- 5. Четыре стрелка стреляют по мишени. Вероятность попадания в цель первого стрелка равна 0,45, для второго 0,5, для третьего 0,6, для четвертого 0,7. Найти вероятность того, что в результате однократного выстрела всех четырех стрелков по мишени будет хотя бы одна пробоина.
- 6. Какова вероятность того, что вынутые последовательно 3 шара из ящика с десятью пронумерованными от 0 до 9 шарами покажут число 789?
- 7. В коробке 5 синих и 4 красных карандаша. Наудачу вынимают 3 карандаша. Какова вероятность, что среди них окажется два синих?

Вариант 12

1. Абонент забыл 3 последние цифры номера телефона и потому набирает наугад. Какова вероятность того, что он верно наберет нужный ему номер (забытые цифры различны)?

- 2. В ОТК фабрики модельной обуви просматривается 200 пар, из них 60% пар фасона «А» и 40% пар фасона «В». Найти вероятность того, что первые две просмотренные пары разных фасонов. Выборка бесповторная.
- 3. Изготовление детали состоит из двух технологических операций. При первой операции получается 2% брака, при второй 6% брака. Операции независимы. Найти вероятность того, что после этих двух операций деталь будет годной.
- 4. Из десяти билетов лотереи выигрышными являются 2. Найти вероятность того, что среди наудачу взятых пяти билетов хотя бы один выигрышный.
- 5. Стрельба производится по мишеням типа A, B, C, число которых соответственно относится, как 5:3:2. Вероятность попадания в мишень типа A равна 0,4, типа B -0,1, типа C -0,15. Найти вероятность поражения мишени при одном выстреле, если неизвестно в мишень какого типа он будет сделан.
- 6. Какова вероятность, что вынутые из колоды четыре карты подряд окажутся шестерками, если в колоде 36 карт?
- 7. В экзаменационные билеты входят 50 вопросов. Студент знает 40 из них. Какова вероятность, что из трех попавшихся в билете вопросов он знает два?

- 1. В лотерее 1000 билетов, из них половина выигрышные. Куплено два билета. Какова вероятность того, что оба билета выигрышные?
- 2. В студии телевидения 3 камеры. Для каждой камеры вероятность того, что она включена в данный момент равна 0,7. Найти вероятность того, что в данный момент включена хотя бы одна камера.
- 3. Возле остановки «Космос» останавливаются автобусы маршрутов №№ 16,15,11,21,9. Для рабочего попутными являются маршруты №№ 15,21. Найти вероятность того, что к остановке первым подойдет автобус маршрута попутного для рабочего, если известно, что на линиях по маршрутам №№ 16,15,11,21,9 курсируют в этот день соответственно 15, 10, 8, 5, 12 автобусов.

- 4. Вероятность того, что стрелок при стрельбе по мишени выбьет:
- 10 очков равна 0,15; 9 очков 0,2; 8 очков 0,3; 7 очков и менее 0,35. Найти вероятность того, что стрелок выбьет более 7 очков, при одном выстреле.
- 5. На десяти одинаковых карточках написаны буквы, составляющие слово «математика». Карточки тщательно перемешивают и вынимают 4, раскладывая их в ряд одну за другой. Найти вероятность того, что появится слово «мама»?
- 6. Из «кассы» букв, содержащей 33 буквы, наудачу вынимают 4 буквы подряд. Какова вероятность того, что появится слово «чудо», если буквы располагаются в порядке их появления?
- 7. Из колоды карт в 36 листов наудачу извлекают 5 карт. Какова вероятность того, что будут вытащены 2 туза и 3 шестерки?

- 1. В ящике 6 белых и 8 черных шаров. Из ящика вынули 2 шара (выборка бесповторная). Найти вероятность того, что оба шара белые.
- 2. В мешочке имеется 7 одинаковых кубиков. На всех гранях каждого кубика одна из следующих букв: о, п, р, с, т, о, м. Найти вероятность того, что на вынутых по одному и расположенных «в одну линию» кубиках можно будет прочесть слово «спорт», «опрос».
- 3. Вероятность попадания в цель при стрельбе из первого орудия равна 0,8, при стрельбе из второго орудия 0,7. Найти вероятность поражения цели при одновременном выстреле обоих орудий. Замечание: поражение хотя бы одно попадание из какого-либо орудия.
- 4. На предприятии при массовом изготовлении некоторого изделия брак составляет в среднем 1,5% общего числа всех изделий. 96% числа годных изделий составляют изделия первосортные. Найти вероятность того, что наугад взятое изделие окажется первосортным.

- 5. Три стрелка независимо друг от друга производят по одному выстрелу. Вероятности попадания в цель равны соответственно: 0,6; 0,7; 0,9. Определить вероятность двух промахов.
- 6. Из колоды карт в 36 листов наудачу извлекают пять карт подряд. Какова вероятность, что появятся последовательно шестерка пик, семерка пик, восьмерка пик, девятка пик и десятка пик?
- 7. В вазе находятся 8 белых, 5 красных и 4 розовые гвоздики. Какова вероятность, что из наудачу извлеченных пяти цветов окажется три белые и две красные гвоздики?

- 1. В ящике содержится 90 годных и 10 дефектных деталей. Контролер наудачу взял три детали. Найти вероятность того, что среди этих трех деталей нет дефектных.
- 2. В лотерее 1000 билетов. Из них на один билет попадает выигрыш 50 руб., на 10 билетов выигрыш по 10 руб., на 50 билетов выигрыш по 2 рубля, остальные билеты невыигрышные. Куплен один билет. Найти вероятность выиграть не менее 2-х рублей.
- 3. В ОТК фабрики модельной обуви просматривается 300 пар, из них 60 пар фасона «А», остальные фасона «В». Найти вероятность того, что первые две просмотренные пары одинакового фасона. Выборка бесповторная.
- 4. Из десяти билетов лотереи выигрышными являются два. Определить вероятность того, что среди наудачу взятых пяти билетов два выигрышных.
- 5. На каждой из шести одинаковых карточек напечатана одна из следующих букв: а, м, и, м, р, р. Карточки тщательно перемешаны. Найти вероятность того, что на трёх вынутых по одной и расположенных 8 одну линию карточках можно будет прочесть слово "мир".
- 6. Какова вероятность того, вынутые из колоды в 36 листов 4 карты подряд появятся в последовательности: бубновый туз, бубновый король, бубновая дама и бубновый валет?

7. В урне находятся 12 белых и 8 черных шаров. Найти вероятность того, что среди наугад взятых 5 шаров 3 будут черными?

Вариант 16

- 1. Из десяти билетов лотереи выигрышными являются два. Определить вероятность того, что среди наудачу взятых пяти билетов один выигрышный.
- 2. Какова вероятность того, что последняя цифра случайно набранного телефонного номера равна пяти или кратна трем?
- 3. Из колоды в 36 карт наугад вынимают 3 карты. Найти вероятность того, что среди них окажется хотя бы один туз.
- 4. Определить вероятность того, что выбранное наудачу изделие является первосортным, если известно, что 4% всей продукции является браком, а 75% доброкачественных изделий является 1 сорта.
- 5. Три стрелка стреляют по мишени. Вероятность попаданий в цель для первого стрелка равна 0,4, для вторбго 0,5 и для третьего 0,7. Найти вероятность того, что в результате однократного выстрела трех стрелков по мишени в ней будет ровно одна пробоина.
- 6. Какова вероятность того, что вынутые последовательно 4 шара из ящика с десятью пронумерованными от 0 до 9 шарами покажут число 5791?
- 7. В коробке 8 синих, 3 красных и 4 зеленых карандаша. Наудачу вынимают 4 карандаша. Какова вероятность, что среди них окажется два красных?

- 1. Найти вероятность того, что среди четырех выбранных наугад цифр все одинаковые.
- 2. Пусть вероятность того, что стрелок при стрельбе по мишени выбьет 10 очков равна 0,15; 9 очков 0,2; 8 очков 0,3; 7 очков или менее равна 0,35. Найти вероятность того, что стрелок при одном выстреле выбьет более 8 очков.

- 3. Из колоды в 36 карт вынимают наудачу 2 карты. Найти вероятность того, что среди этих карт окажется хотя бы один валет.
- 4. В ящике находится 30 деталей, из них 25 первого сорта, остальные второго сорта. Вынимаются последовательно наудачу три детали. Какова вероятность того, что две первые детали окажутся первого сорта, а третья второго сорта?
- 5. Четыре стрелка стреляют по мишени. Вероятность попадания в цель для первого стрелка равна 0,45; для второго 0,5; для третьего 0,5; четвертого 0,7. Найти вероятность того, что в результате однократного выстрела всех четырех стрелков по мишени хотя бы одно пробоина.
- 6. Какова вероятность, что вынутые из колоды 9 карт подряд окажутся картами одной масти, если в колоде 36 карт?
- 7. В экзаменационные билеты входят 40 вопросов. Студент не знает 10 из них. Какова вероятность, что из трех попавшихся в билете вопросов он не знает один?

- 1. Из колоды в 36 карт наудачу вынимают 2 карты. Найти вероятность того, что среди этих карт окажется 1 туз и 1 валет.
- 2. Бросаются одновременно две монеты. Какова вероятность появления герба на обеих монетах?
- 3. В лотерее всего 100 билетов, среди них один выигрыш в 30 рублей, три по 15 руб., пять выигрышей по 10 руб., десять по 5 руб., и 25 по 1 руб. Найти вероятность выигрыша 5 руб., имея два билета.
- 4. Рабочий обслуживает 4 станка. Вероятность того, что в течении часа первый станок остановится равна 0,3, второй 0,4, третий 0,7, четвертый 0,4. Найти вероятность того, что в течении часа хотя бы один станок будет работать без остановок.

- 5. Вероятность того, что стрелок при одном выстреле попадет в мишень равна 0,9. Стрелок произвел 3 выстрела. Найти вероятность того, что все три выстрела дали попадание.
- 6. Из «кассы» букв наудачу вынимают 6 букв подряд. Какова вероятность того, что появится слово «теория», если буквы располагаются в порядке их появления, а в «кассе» имеется 33 буквы алфавита?
- 7. Из колоды карт в 52 листа наудачу извлекают 6 карт. Какова вероятность того, что будут извлечены 3 дамы и 3 короля?

- 1. Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 50. Найти вероятность того, что номер первого, наудачу извлеченного жетона, не содержит цифры 4.
- 2. Из колоды в 36 карт наудачу вынимают 4 карты. Найти вероятность того, что среди этих карт окажется хотя бы два туза.
- 3. Вероятность выполнить месячный план торговой точкой равна 0,95. Вероятность перевыполнения плана точкой, из числа выполнивших план, равна 0,8. 4. Какова вероятность перевыполнения плана любой торговой точкой из их общего числа?
- 4. В урне 30 шаров, из них 5 черных, а остальные белые. Вынимают один за одним три шара подряд. Какова вероятность того, что будет вынуто 2 белых и один черный шар (выборка бесповторная).
- 5. Производится по одному выстрелу из трех орудий. Вероятность попадания в цель для первого орудия $-\frac{1}{4}$, для второго $-\frac{3}{5}$, для третьего $-\frac{1}{3}$. Найти вероятность попадания в цель ровно двумя орудиями.
- 6. Из колоды карт в 52 листа наудачу извлекают четыре карты подряд. Какова вероятность, что появятся последовательно туз пик, туз червей, туз бубновый и туз крестей?

7. В вазе находятся 4 яблока, 5 груш и 3 апельсина. Какова вероятность, что из наудачу извлеченных четырех фруктов окажется три яблока и один апельсин?

Вариант 20

- 1. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара подряд. Какова вероятность, что оба шара белые?
- 2. В партии из 300 деталей имеется 15 бракованных. Найти вероятность того, что из трех, наудачу взятых одна за другой деталей, две бракованные и одна годная.
- 3. На складе имеется 15 кинескопов, причем 10 из них изготовлены Львовским заводом. Найти вероятность того, что среди наудачу взятых пяти кинескопов – 3 кинескопа Львовского завода.
- 4. Имеется колода карт (36 штук). Вынимают две карты подряд. Какова вероятность того, что обе карты будут одинаковой масти?
- 5. Три стрелка стреляют по мишени. Вероятность попадания в цель первым стрелком 0,75, вторым 0,8, третьим 0,9. Определить вероятность того, что в цель попадет хотя бы один стрелок.
- 6. Какова вероятность того, вынутые из колоды в 52 листа 2 карты подряд появятся в последовательности: десятка пик, валет пик?
- 7. В ящике находятся 10 деталей, изготовленных заводом №1 и 7 деталей, изготовленных заводом №2. Найти вероятность того, что среди наудачу взятых 6 деталей 4 из них окажутся изготовленными заводом №1?

Вариант 21

1. Ребенок играет пятью буквами разрезной азбуки О, Л, К, Д, А. Какова вероятность того, что он при случайном расположении букв в ряд получит слово «лодка»?

- 2. Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех вторая цифра. Найти вероятность того, что будет выбрана нечетная цифра: а) в первый раз; б) во второй раз.
- 3. На восьми одинаковых карточках написаны соответственно числа 2, 4, 6, 7, 8, 11, 12, 13. Наугад берутся две карточки. Определеить вероятность того, что образованная из двух полученных чисел дробь сократима.
- 4. В партии из 300 деталей имеется 15 бракованных. Найти вероятность того, что из трех взятых наудачу деталей одна бракованная и две годные.
- 5. Числитель и знаменатель рациональной дроби написаны наудачу. Какова вероятность того, что эта дробь не сократима на 5?
- 6. Какова вероятность того, что извлеченные подряд 3 детали из ящика с семью пронумерованными от 1 до 7 деталями появятся в последовательности №3, №5, №7?
- 7. В ящике 5 зеленых, 3 красных и 4 желтых новогодних елочных шаров. Наудачу вынимают 3 шара. Какова вероятность, что среди них окажется два зеленых?

- 1. На шести картах написаны буквы: м, е, р, и, т, а. Наудачу вынимают одну карточку за другой и кладут в том порядке, в каком она была вынута. Какова вероятность того, что получится слово «мир»?
- 2. В колоде 36 карт. После извлечения и возвращения одной карты колода перемешивается и снова извлекается одна карта (выборка возвратная). Найти вероятность того, что обе извлеченные карты одной масти.
- 3. Круговая мишень состоит из трех зон. Вероятность попадания в первую зону -0.2, во вторую -0.34, в третью -0.12. Найти вероятность промаха.
- 4. Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех вторая. Найти вероятность того, что будет выбрана одна четная и одна нечетная цифра.

- 5. Производится по одному выстрелу из трех орудий. Вероятности попадания в цель для первого орудия -1/4, для второго -3/5, для третьего -1/3. Найти вероятность попадания одним орудием.
- 6. Какова вероятность, что вынутые из колоды 4 карты подряд окажутся тузами, если в колоде 52 листа?
- 7. В банке тестовых вопросов находится 40 вопросов. Студент не знает 10 из них. Какова вероятность, что из десяти попавшихся в его тесте вопросов он не знает три?

- 1. Библиотечка состоит из 10 различных книг, причем 5 книг стоят по 40 рублей каждая, 3 книги по 10 рублей и две книги по 20 рублей. Найти вероятность того, что взятые наугад 2 книги стоят 50 рублей.
- 2. В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 9 студентов. Найти вероятность того, что среди отобранных студентов окажутся 5 отличников.
- 3. Дается залп из трех орудий по мишени. Вероятность попадания из первого орудия равна 0.85, из второго -0.91. найти вероятность поражения цели.
- 4. В первом ящике два белых и 10 черных шаров. Во втором ящике 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Определить вероятность того, что один из вынутых шаров белый, а другой черный.
- 5. Монета бросается до тех пор, пока два раза подряд она не выпадет одной и той же стороной. Найти вероятность того, что опыт окончится до шестого бросания.
- 6. Из мешочка с карточками, на каждой из которых написана одна из букв «В П У О Л Д Γ А», наудачу извлекают 3 карточки подряд. Какова вероятность того, что появится слово « Γ ОЛ», если карточки располагаются в порядке их появления?
- 7. Из колоды карт в 36 листов наудачу извлекают 5 карт. Какова вероятность того, что будут извлечены 2 короля и 3 дамы?

- 1. На шести карточках написаны буквы, обозначающие слово «космос». После перемешивания извлекают последовательно 3 карточки и прикладываются справа одна к другой. Какова вероятность того, что будет составлено слово «сом»?
- 2. В партии из 300 деталей имеется 15 бракованных. Найти вероятность того, что из четырех взятых наудачу деталей 2 годные и 2 бракованные.
- 3. Вероятность выполнить месячный план по заготовке молока у одного совхоза равна 0,95, а у другого совхоза 0,97. Какова вероятность того, что месячный план будет выполнен обоими совхозами?
- 4. Бросаются две игральные кости. Вычислить вероятность вскрытия с грани с тремя очками, по крайней мере, на одной из них.
- 5. Бросаются одновременно три монеты. Найти вероятность выпадения двух гербов.
- 6. Из колоды карт в 36 листов наудачу извлекают четыре карты подряд. Какова вероятность, что появятся четыре туза?
- 7. В вазе находятся 10 шоколадных конфет, 7 карамелек и 5 батончиков. Какова вероятность, что из наудачу извлеченных трех конфет окажутся две шоколадные конфеты и одна карамелька?

- 1. Имеется 12 билетов в театр, из которых 4 билета на места первого ряда. Какова вероятность того, что из трех наудачу выбранных билетов два окажутся на места первого ряда?
- 2. Два стрелка стреляют по одному выстрелу в мишень. Вероятность попадания первого стрелка 0,7, а второго-0,8. Найти вероятность того, что мишень будет поражена.
- 3. Код домофона состоит из 8 цифр. Какова вероятность того, что случайно набирая цифры, можно угадать нужный код?

- 4. На карточках написаны целые числа от 2 до 25 включительно. Наудачу извлекаются две карточки. Какова вероятность того, что сумма чисел, написанных на этих карточках, равна пятнадцати.
- 5. В коробке 5 синих, 4 красных и 3 зеленых карандаша. Наудачу вынимаются три карандаша. Какова вероятность того, что все они одного цвета.
- 6. Монета подбрасывается три раза. Какова вероятность того, что «герб» появится хотя бы один раз?
- 7. Одновременно бросаются две игральные кости. Найти вероятность того, что произведение выпавших очков не превосходит 8.
- 8. Из полного набора домино наудачу 5 раз извлекают по одной кости, причем после каждого извлечения кость возвращается в игру. Какова вероятность того, что при этом «дубль» появится 5 раз.

Расчетно-графическая работа №6 «Вариационный ряд, его характеристики»

Работа состоит из 5 заданий для 25 вариантов.

Содержание работы: на основе совокупности данных опыта выполнить следующее:

- 1 Построить ряды распределения (интервальный и дискретный вариационные ряды). Изобразить их графики.
 - 2 Построить график накопительных частот кумуляту.
- 3 Вычислить моду, медиану, выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение.
 - 4 Раскрыть смысловую сторону каждой характеристики.
- 5 Проверить полученные числовые характеристики в программе Microsoft Office Excel).

Вариант 1												
52 40 9 19	33 46 17 57	10 51 32 32	22 44 41 7	28 32 47 28	34 16 31 23	39 11 42 20	29 29 15 45	21 31 21 18	27 38 29 29	31 44 50 25	12 31 55	28 24 37
Вари	иант 2											
14 13 13 15	13 13 12 12	18 14 14 15	15 16 16 13	12 18 12 13	13 13 13 15	14 15 15 15	12 14 15 15	13 15 15 17	16 14 13 17	16 13 14	15 15 15	12 12 18
Вари	иант 3											
30 26 33 23	19 24 18 20	21 19 21 21	28 23 26 26	27 27 30 22	29 30 32 20	31 29 34 27	24 25 29	25 18 26	28 18 23	28 24 25	32 28 27	34 31 32

Вари	ант 4											
0,3 1,3 1,8 0,7 1,1	0,4 0,6 0,3 0,9 1,2	0,8 1,0 0,6 1,5 1,3	1,2 1,0 1,1 1,3	1,4 1,1 0,8 1,1	1,9 0,5 1,2 1,2	0,7 1,2 0,9 1,8	1,3 1,0 1,4 1,1	1,0 1,4 1,3 1,0	0,5 1,6 1,6 1,2	0,9 0,5 2,7 0,9	1,2 1,1 1,5 1,5	1,0 1,1 0,8 1,3
Вариант 5												
261 261 259 259 259	260 260 259 262 262	258 263 258 261	263 260 262 266	257 260 264 262	260 259 258 259	259 260 259 262	264 258 263 261	261 265 266 259	260 259 259 262	264 265 261 262	261 261 266 261	265 258 262 266
Вари	ант 6											
78 84 83 84 78	90 85 88 81 76	76 83 87 83 84	81 88 77 88 81	77 76 82 82 76	83 79 85 83 74	85 85 74 88 81	75 81 79 80 93	81 89 82 79 84	73 83 87 82 92	75 76 71 86 75	83 77 78 74 82	73 84 85 75 77
Вари	ант 7											
550 539 558 552 558	550 537 548 559 563	551 543 540 557 562	550 540 541 546 569	551 556 551 552 552	562 546 549 550 554	550 556 551 557 549	562 556 550 547 545	561 534 552 552 560	530 548 568 554 539	542 533 538 547 549	535 558 551 554 539	542 560 547 567
Вари	ант 8											
0,90 0,89 0,91 0,85	0,79 0,88 0,95 0,90	0,84 0,78 0,97 0,82	0,86 0,81 0,88 0,85	0,88 0,85 0,79 0,90	0,90 0,88 0,82 0,96	0,89 0,94 0,84 0,98	0,85 0,86 0,90 0,89	0,91 0,80 0,81 0,87	0,98 0,86 0,87 0,99	0,91 0,91 0,91 0,85	0,80 0,78 0,90	0,87 0,86 0,82
Вари	ант 9											
14,5	14,6	15,1	15,5	16,3	16,8	17,9	16,3	14,5	14,9	13,6	15,4	16,9

15,4 17,7 16,9	14,3 16,6 11,7	15,5 16,2 13,2	11,3 15,5 14,9	15,5 12,8 19,8	17,1 14,2 16,6	16,8 15,5 17,9	12,2 16,1 14,9	15,2 14,3 15,2	15,7 16,5 17,3	11,6 14,5 16,9	16,9 17,9	15,7 17,8	
Вари	Вариант 10												
73 87 85 76 84 81 88 75	77 83 76 75 77 90 84 83	78 79 79 91 92 78 83 87	88 73 71 83 93 81 93 92	76 84 88 82 91 95 73 80	78 86 83 84 85 77 79 88	86 85 76 85 84 91 92	77 74 76 78 87 84 89 95	75 77 82 85 81 96 75 82	90 74 73 85 83 84 83	88 88 89 79 80 79 87	84 81 79 92 82 79 89	79 87 90 86 76 83 71	
Вари	ант 11	-											
39 34 22 26	19 26 24 21	21 24 28 20	28 22 31 23	26 19 33 25	27 23 25 27	29 27 18 30	28 30 21 32	28 29 26 29	27 25 30 27	23 18 32 23	26 18,5 34	32 20 29	
Вари	ант 12	2											
24,6 21,3	26,8 27,9 25,2 26,2	25,4 25,5	21,3 25,7		27,7 28,2	23,6 25,4	25,2 23,2	26,8 26,6		25,1 24,3	28,5 26,3 26,8	25,3 25,4 25,8	
Вари	ант 13	3											
4,7 5,7 6,7 8,2	7,2 8,2 7,2 4,7	6,2 5,7 8,2 8,7	6,7 6,7 6,2 4,2	6,2 5,7	5,7	6,2 7,7	6,7 6,7	7 5,2 7 7,2	2 7, ⁷ 2 5, ⁷	7 6, 7 6,	2 7, 7 8,	7 6,2 2 7,7 2 7,7	
Вари	ант 14	ļ											
82 81 76 97	83 78 73 84	73 86 78 80	76 84 76 75	79 84 76 81	89 86 74 73	95 85 88 78	92 87 82 83	93 84 73 75	84 74 85 90	88 83 79 83	76 87 77 77	88 73 79 84	

85 90 84 88	90 73 95 82	92 92 79 77	91 84 79 92	85 93 83 76	71 88 96 84	85 84 89 83	87 81 82 87	82 93 79 89	94 81 77	92 91 83	76 78 88	93 85 81
Вариант 15												
21 31 27 29 29 27 29 27	29 29 33 31 27 33 27 31	27 31 29 29 29 29 31 37	29 29 25 31 29 31 31 25	27 31 29 23 29 29 27 31	29 29 19 35 33 29 29	31 31 29 27 29 29 35 27	29 33 31 29 25 35 27 29	31 31 23 29 25 27 33 25	29 31 31 27 27 29 29	29 31 29 29 31 35 27	23 27 27 29 29 29 29	39 23 33 21 29 33 25
Вари	ант 16											
28 35 30 30 31 38 30 30	30 27 28 30 26 29 29 30	28 31 30 36 25 31 30 29	27 31 29 26 29 29 28 32	28 30 30 25 31 27 32 29	29 28 26 28 33 31 30 34	29 33 25 30 27 30 29 30	29 23 31 29 32 28 34 32	31 30 33 27 30 34 32 24	28 31 26 32 31 30 35	26 33 27 29 34 26 29	25 31 33 31 28 30 27	33 27 29 30 26 32 28
Вари	ант 17	,										
4,25 4,13 4,45 4,51	4,38 4,51 4,12 4,42	4,48 4,31 4,69 4,36	4,53 4,27 4,28 4,45	4,54 4,87 4,74 4,32	4,41 4,32 4,55 4,17	4,52 4,49 4,28 4,79	4,39 4,74 4,54 4,13	4,51	4,27 4,66 4,77 4,73	4,59 4,92 4,71 4,95	4,48 4,48 4,78	4,56 4,68 4,13
Вари	ант 18	;										
3,59 3,77 3,60 3,63	3,47 3,13 3,65 3,43	3,50 3,59 3,47 3,78	3,66 3,52 3,75 3,45	3,59 3,43 3,74 3,64	3,53 3,46 3,52 3,43	3,49 3,61 3,49 3,62	3,52 3,33 3,78 3,55	3,31 3,66 3,65 3,42	3,68 3,52 3,48 3,73	3,86 3,96 3,49 3,48	3,57 3,92 3,32	3,69 3,49 3,27

Вари	ант 19)										
48 40 20 28	29 28 27 37	6 12 15 43	18 7 6 27	24 25 16 38	30 23 25 53	35 33 34 24	25 28 17 41	17 19 25 21	24 14 46 11	36 8 6 26	42 40 51	47 27 13
Вари	ант 20)										
95 55 12 41 99 69 28	57 102 19 58 65 81 57	15 96 51 63 68 83 85	26 45 103 59 78 100 69	35 54 62 60 91 90 13	46 56 61 63 94 36 53	52 60 38 68 77 64 11	55 10 29 70 65 97 61	59 16 10 71 79 50 90	47 20 39 75 67 76 76	42 49 40 82 74 72 17	48 48 18 87 80 31 37	58 43 14 92 89 55
Вари	ант 21											
19,2 19,1 18,6 19,8	18,1 18,9 18,8 18,9	18,4 19,3 19,3 19,7	18,2 18,4 18,8 18,5	18,6 19,2 19,0 19,0	18,9 18,2 19,5 19,9	19,0 18,7 18,9 19,2	18,4 19,5 19,0 19,1	18,5 18,7 19,8 18,6	19,3 19,1 19,7 19,5	18,3 18,7 19,4 19,6	18,7 19,1 19,3	18,8 19,6 19,1
Вари	ант 22	2										
21 30 34 33 29 31 28	30 31 28 30 34 20 29	26 29 31 25 28 30 34	29 30 29 26 28 29 24	27 28 30 27 31 26 28	28 28 23 31 32 29 29	31 24 36 29 34 29 28	28 27 27 30 29 29 31	29 33 28 28 29 32 32	24 29 29 29 28 34 27	38 26 36 27 27 30 28	32 29 30 28 33 31 29	32 26 28 36 36 21
Вари	ант 23	;										
16 17 18 23 15 17	13 19 22 20 13 21	11 15 24 22 16 23	15 13 1 24 17 26	18 12 15 17 18 19	19 14 14 16 14 22	21 16 10 14 15 24	18 17 12 15 19 25	17 20 16 18 17 20	15 17 18 15 18 21	13 17 18 11 16 24	16 20 19 16 13 19	18 19 21 17 15 22

23 21	20 27	25 19	21 15	20 22	22 23	26 18	19 22	22 22	25	28	23	20
Вари	ант 24											
36,8 38,5 34,6 29,3	32,0 34,2 36,8 28,4	39,4 37,2 39,1 40,2	36,3 30,6 29,5 34,8	35,4 37,3 30,4 37,2	37,3 35,2 35,2 32,6	34,7 36,9 36,5 41,0	39,0 34,3 38,2 40,4	28,3 35,2 40,2 28,3	41,3 30,8 36,8 34,8	36,1 36,0 39,3 39,2	37,3 39,3 32,7	32,2 32,7 37,1
Вари	ант 25											
11 22 16 32	15 23 24 34	20 26 27 39	25 28 25 38	29 30 31 44	34 18 32 28	19 13 23 33	25 17 37 23	16 22 23 35	21 29 27 36	29 26 37 34	20 39 36	21 14 42

Расчетно-графическая работа №7 «Комплексные числа»

Работа состоит из 7 заданий для 20 вариантов. Приведены примеры выполнения заданий.

Задание 1. Выполнить указанные действия

Ва- ри- ант	Задание	Ва- ри- ант	Задание
1.	$(1+4i)\cdot(2-3i) + \frac{2i(5+2i)}{1+2i}$	2.	$\frac{(2-6i)\cdot i}{-4+2i} - (1-i)^2$
3.	$\frac{5+i}{-1-2i} + \frac{2+3i}{i}$	4.	$\frac{(1-5i)\cdot(2+i)}{-1+i} - i^{7}(2-3i)$
5.	$(2-i)^2 + \frac{3+i}{1-2i}$	6.	$\frac{4-5i^3}{1+i} - 3i(5+2i)$
7.	$\frac{(1-2i)(1+i)}{3-i} - 2i(2-i)$	8.	$\frac{5+3i}{1+3i}-i(2+3i)$
9.	$(3-2i)^2 + \frac{9-8i}{4+2i} - i^5$	10.	$(-1+i)\cdot(3+2i) + \frac{i(6-4i)}{2+2i}$
11.	$5 - 3i + \frac{i^3 (2 - i)}{2 + i}$		$(4-i)^2 + \frac{1+8i^3}{4-2i}$
13.	$\frac{(1-2i)^2}{3+i} - 1 + i$	14.	$\frac{5i+2i^6}{1-i}-3+2i$
15.	$\frac{i^5(6-i)}{-2+i} - 2 + 3i$	16.	$\frac{(1+2i)\cdot(3-i)}{2-i}-i(5+3i)$
17.	$\frac{i}{-1+3i}-1+4i^5$	18.	$\frac{(1-i)\cdot(5+i)}{-3+i} - i^{3}(1+i)$
19.	$\frac{(1+5i)\cdot(1-i)}{-1+2i}-3i$	20.	$\frac{2+4i}{1-3i} - i^3(1+3i)$

Задание 2.Найти действительные решения уравнения

Вариант	Задание
1.	$(2-i)^2 x + (3-2i) y = -2i$
2.	(5+2i) x + (1-3i) y = x + y + 8 - 5i
3.	(1+4i) x + (5-2i) y = (3+i)x - (2+3i)y + 3+7i
4.	(3+5i) x + (1-2i) y = (3-4i)i
5.	$(5+i)^2 x - y = (1+i) x + 9i$
6.	(2+i)ix + (4-i)y = y + 5i
7.	(5+i) x + (4-2i) y = ix - (2+i)y + 4+i
8.	(2-i) x + (-5+2i) y = 1-i
9.	$(1+3i)x + (2-i)^2 y = (-1-4i)i$
10.	(3-i) x + (2+2i) y = (1+2i)x - iy
11.	(2+3i) x + (1-i) y = 1+9i
12.	(3-2i) x + (1+4i) y = 5+6i
13.	(6-i)x + (3+2i)y = x-13i+13
14.	(5-2i) x + (1+4i) y = 7+6i
15.	(-4+i) x + (3-2i) y = -7+3i
16.	$\frac{2+i}{i}x - (4+2i)y = 3+4i$
17.	(5+i) x - (1+i) y = -7 - 3i
18.	(2+i) x + (3-2i) y = (1-i)x + (4+i)y
19.	(7-i)x + (-2+4i)y = 11+x
20.	x + (-1+3i) y = 1-6i

Задание 3.Дать геометрическое описание множества точек комплексной плоскости, удовлетворяющих указанному условию

Вари- ант 3 адание $\frac{Ba}{p\mu}$ 3 адание $\frac{Ba}{p\mu}$ 3 адание $\frac{Ba}{a}$		T		1
aht $ \operatorname{Im}(\overline{z})\rangle - 1$ 2. $-1 \le \operatorname{Re}(z) \le 3$ 3. $0 < \operatorname{arg} z < \frac{\pi}{2}$ 4. $1 \le z - 3 \le 3$ 5. $ z - i < 5$ 6. $ z ^2 = (\operatorname{Re} z)^2 + 9$ 7. $\operatorname{Im}(z - 4i) > 0$ 8. $ z + 4i < 4$ 9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \operatorname{arg} z \le \pi$ 12. $\operatorname{Re}(z + 2) \ge 0$ 13. $\operatorname{Re}(z - 2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \operatorname{arg} z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z + i) \le 3$	Ba-		Ba-	
1. $\operatorname{Im}(\overline{z}) > -1$ 2. $-1 \le \operatorname{Re}(z) \le 3$ 3. $0 < \operatorname{arg} z < \frac{\pi}{2}$ 4. $1 \le z - 3 \le 3$ 5. $ z - i < 5$ 6. $ z ^2 = (\operatorname{Re} z)^2 + 9$ 7. $\operatorname{Im}(z - 4i) > 0$ 8. $ z + 4i < 4$ 9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \operatorname{arg} z \le \pi$ 12. $\operatorname{Re}(z + 2) \ge 0$ 13. $\operatorname{Re}(z - 2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \operatorname{arg} z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z + i) \le 3$	ри-	Задание	ри-	Задание
3. $0 < \arg z < \frac{\pi}{2}$ 4. $1 \le z - 3 \le 3$ 5. $ z - i < 5$ 6. $ z ^2 = (\operatorname{Re} z)^2 + 9$ 7. $\operatorname{Im}(z - 4i) > 0$ 8. $ z + 4i < 4$ 9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z + 2) \ge 0$ 13. $\operatorname{Re}(z - 2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z + i) \le 3$	ант		ант	
3. $0 < \arg z < \frac{\pi}{2}$ 4. $1 \le z - 3 \le 3$ 5. $ z - i < 5$ 6. $ z ^2 = (\operatorname{Re} z)^2 + 9$ 7. $\operatorname{Im}(z - 4i) > 0$ 8. $ z + 4i < 4$ 9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z + 2) \ge 0$ 13. $\operatorname{Re}(z - 2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z + i) \le 3$				
3. $0 < \arg z < \frac{\pi}{2}$ 4. $1 \le z - 3 \le 3$ 5. $ z - i < 5$ 6. $ z ^2 = (\operatorname{Re} z)^2 + 9$ 7. $\operatorname{Im}(z - 4i) > 0$ 8. $ z + 4i < 4$ 9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z + 2) \ge 0$ 13. $\operatorname{Re}(z - 2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z + i) \le 3$	1.	$\left \operatorname{Im} \left(\overline{z} \right) \right > -1$	2.	$-1 \le \operatorname{Re}(z) \le 3$
5. $ z-i < 5$ 6. $ z ^2 = (\operatorname{Re} z)^2 + 9$ 7. $\operatorname{Im}(z-4i) > 0$ 8. $ z+4i < 4$ 9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z+2) \ge 0$ 13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$		(*)		` ′
5. $ z-i < 5$ 6. $ z ^2 = (\operatorname{Re} z)^2 + 9$ 7. $\operatorname{Im}(z-4i) > 0$ 8. $ z+4i < 4$ 9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z+2) \ge 0$ 13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$	2	$0 < \text{org} \ z < \pi$	1	1< 7-3 <3
7. $ \operatorname{Im}(z-4i)>0$ 8. $ z+4i <4$ 9. $ \operatorname{Re}(z\cdot i)>3$ 10. $ \operatorname{Im}(z^2)\leq 2$ 11. $\frac{\pi}{2} \leq \frac{\pi}{2} + \arg z \leq \pi$ 12. $ \operatorname{Re}(z+2)\geq 0$ 13. $ \operatorname{Re}(z-2)\leq 1$ 14. $ \operatorname{Im}(z\cdot i)<-1$ 15. $ z < \operatorname{Im}(z)\leq 4$ 16. $ \operatorname{Re}(z^2)=0$ 17. $ \frac{\pi}{4} < \operatorname{arg} z < \frac{\pi}{2}$ 18. $ \operatorname{Im}(z+i)\leq 3$	3.	$0 < \arg z < \frac{1}{2}$	4.	$ 1 \le 4 - 3 \le 3$
7. $ \operatorname{Im}(z-4i)>0$ 8. $ z+4i <4$ 9. $ \operatorname{Re}(z\cdot i)>3$ 10. $ \operatorname{Im}(z^2)\leq 2$ 11. $\frac{\pi}{2} \leq \frac{\pi}{2} + \arg z \leq \pi$ 12. $ \operatorname{Re}(z+2)\geq 0$ 13. $ \operatorname{Re}(z-2)\leq 1$ 14. $ \operatorname{Im}(z\cdot i)<-1$ 15. $ z < \operatorname{Im}(z)\leq 4$ 16. $ \operatorname{Re}(z^2)=0$ 17. $ \frac{\pi}{4} < \operatorname{arg} z < \frac{\pi}{2}$ 18. $ \operatorname{Im}(z+i)\leq 3$				
9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z+2) \ge 0$ 13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$	5.	z-i < 5	6.	$\left z\right ^2 = \left(\operatorname{Re}z\right)^2 + 9$
9. $\operatorname{Re}(z \cdot i) > 3$ 10. $\operatorname{Im}(z^2) \le 2$ 11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z+2) \ge 0$ 13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$				
11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z+2) \ge 0$ 13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$	7.	$\operatorname{Im}(z-4i) > 0$	8.	z+4i <4
11. $\frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi$ 12. $\operatorname{Re}(z+2) \ge 0$ 13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$	0	Pa (- :) > 2	10	x (2) 10
13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \operatorname{arg} z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$	9.	$\operatorname{Re}(z \cdot t) > 3$	10.	$\operatorname{Im}(z^2) \leq 2$
13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \operatorname{arg} z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$		π π		
13. $\operatorname{Re}(z-2) \le 1$ 14. $\operatorname{Im}(z \cdot i) < -1$ 15. $2 < \operatorname{Im}(z) \le 4$ 16. $\operatorname{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \operatorname{arg} z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$	11.	$\left \frac{\pi}{2} \le \frac{\pi}{2} + \arg z \le \pi \right $	12.	$\operatorname{Re}(z+2) \ge 0$
15. $2 < \text{Im}(z) \le 4$ 16. $\text{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\text{Im}(z+i) \le 3$				
15. $2 < \text{Im}(z) \le 4$ 16. $\text{Re}(z^2) = 0$ 17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\text{Im}(z+i) \le 3$	13.	Re(z-2) < 1	14.	$\operatorname{Im}(z \cdot i) < -1$
17. $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ 18. $\operatorname{Im}(z+i) \le 3$		$RC(2, 2) \ge 1$	1	
	15.	$2 < \operatorname{Im}(z) \le 4$	16.	$\operatorname{Re}(z^2) = 0$
				\ . · /
	1.7	π π	1.0	In (- + i) < 2
19. $ z+1-2i \le 2$ 20. $ z > (\operatorname{Re} z)^2 - 4$	17.	$\frac{1}{4} < \arg z < \frac{1}{2}$	18.	$\left \prod (z+l) \le 3 \right $
19. $ z+1-2i \le 2$				
	19	$ z+1-2i \le 2$	20	$ z > (\text{Re } z)^2 - 4$
		-		

В вариантах 2, 6, 9, 12, 13, 16, 20 считать, что $\operatorname{Re}(a+bi) = a$ В вариантах 1, 7, 10, 14, 15, 18 считать, что $\operatorname{Im}(a+bi) = b$.

Задание 4. Представить комплексные числа z_1 и z_2 в тригонометрической и экспоненциальной формах и изобразить точками на комплексной плоскости

Ba-		Ba-	
ри-	Задание	ри-	Задание
ант		ант	
1.	$z_1 = 2 + 2\sqrt{3}i$,	2.	$z_1 = -4\sqrt{3} + 4i$,
1.	$z_1 = z + z \sqrt{3} t,$		$z_1 = -4\sqrt{3} + 4\iota,$
	$z_2 = 3 - 3i$		$z_2 = 0.5 + 0.5i$
3.	$z_1 = -3 + 3i,$	4.	$z_1 = -7 + 7\sqrt{3}i$,
	<u></u>		7 7
	$z_2 = \sqrt{3} + i$		$z_2 = 3\sqrt{3} + 3i$
5.	/2 · 5·	6.	4 4 2 . 0.5 .
J.	$z_1 = -\sqrt{3} - i$, $z_2 = -5i$	0.	$z_1 = 4 - 4\sqrt{3}i$, $z_2 = 0.5i$
7.	$z_1 = -2 - 2i,$	8.	$z_1 = 6\sqrt{3} + 6i,$
	$z_2 = 1 + i\sqrt{3}$		$z_2 = -\sqrt{2} - \sqrt{2}i$
9.	$z_1 = -3 - 3\sqrt{3}i , z_2 = -2i$	10.	$z_1 = -2 + 2\sqrt{3}i$, $z_2 = -0.5i$
11.	1 /2	12.	_
11.	$z_1 = -\frac{1}{4} + \frac{\sqrt{3}}{4}i,$	12.	$z_1 = 4\sqrt{3} + 4i$,
	4 4		
	$z_2 = 2\sqrt{3} + 2i$		$z_2 = \sqrt{2} - \sqrt{2}i$
	$22 - 2\sqrt{3} + 2i$		
13.	$z_1 = 1 - \sqrt{3}i,$	14.	$z_1 = 5 + 5\sqrt{3}i$,
	$\lambda_1 = 1 - \sqrt{3}\iota$		1
	$z_2 = 4 + 4i$		$z_2 = -2\sqrt{3} + 2i$
15.	$z_1 = 2 - 2\sqrt{3}i,$	16.	2 /2 . 2:
15.	1 -	10.	$z_1 = -2\sqrt{3} + 2i ,$
	$z_2 = \sqrt{2} + \sqrt{2}i$		$z_2 = 4i$
17	2 2 5:	18.	/ <u>-</u>
17.	$z_1 = -2 - 2\sqrt{3} i,$	10.	$z_1 = \sqrt{3} - i,$
	$z_2 = 6\sqrt{3} + 6i$		$z_2 = 4 + 4i$
19	$z_1 = -3 - 3i$,	20.	$z_1 = -3 + 3\sqrt{3}i$
17.	_		1
	$z_2 = 4\sqrt{3} + 4i$		$z_2 = 3\sqrt{3} - 3i$
L			

Задание 5. Для комплексных чисел z_1 и z_2 , записанных в тригонометрической форме, из задания 4, выполнить указанные действия.

Ва- ри- ант	Задание	Ва- ри- ант	Задание
un i		WIII	
1.	$z_1^5 \cdot z_2, \ \frac{z_1}{z_2}, \ \sqrt[4]{z_2}$	2.	$z_1 \cdot z_2, \ \frac{z_1^5}{z_2}, \ \sqrt[3]{z_2}$
3.	$z_1 \cdot z_2^5, \ \frac{z_1}{z_2}, \ \sqrt[3]{z_2^5}$	4.	$z_1 \cdot z_2, \ \frac{z_1}{z_2^5}, \ \sqrt[3]{z_1}$
5.	$z_1^7 \cdot z_2, \ \frac{z_1}{z_2}, \ \sqrt[4]{z_2}$	6.	$z_1 \cdot z_2, \ \frac{z_1^4}{z_2}, \ \sqrt[4]{z_1}$
7.	$z_1 \cdot z_2, \ \frac{z_1^8}{z_2}, \ \sqrt[4]{z_2}$	8.	$z_1^5 \cdot z_2, \ \frac{z_1}{z_2}, \ \sqrt[4]{z_1^5}$
9.	$z_1 \cdot z_2, \ \frac{z_1^3}{z_2}, \ \sqrt[5]{z_2}$	10.	$z_1 \cdot z_2, \ \frac{z_1}{z_2}, \ \sqrt[4]{z_1^3}$
11.	$z_1^5 \cdot z_2, \ \frac{z_1}{z_2}, \ \sqrt[3]{z_2}$	12.	$z_1 \cdot z_2, \ \frac{z_1}{z_2^3}, \ \sqrt[5]{z_1}$
	$z_1 \cdot z_2^6, \ \frac{z_1}{z_2}, \ \sqrt[4]{z_1}$	14.	$z_1 \cdot z_2^7, \ \frac{z_1}{z_2}, \ \sqrt[3]{z_2}$
15.	$z_1 \cdot z_2, \ \frac{z_1^5}{z_2}, \ \sqrt[4]{z_1^5}$	16.	$z_1^3 \cdot z_2, \ \frac{z_1}{z_2}, \ \sqrt[4]{z_1^3}$
17.	$z_1 \cdot z_2^5, \ \frac{z_1}{z_2}, \ \sqrt[3]{z_1}$	18.	$z_1 \cdot z_2, \ \frac{z_1}{z_2^7}, \ \sqrt[4]{z_1}$
19.	$z_1^5 \cdot z_2, \ \frac{z_1}{z_2}, \ \sqrt[3]{z_2}$	20.	$z_1 \cdot z_2, \ z_1 : z_2^3, \ \sqrt[4]{z_2^3}$

Задание 6

Найти корни многочлена второй степени (с комплексными коэффициентами) на множестве комплексных чисел и разложить его на множители.

Вариант	Задание
1.	$Q(x) = x^2 - 2x - 4ix + 6 + 4i$
2.	$Q(x) = x^2 + x - 6ix - 11 - 3i$
3.	$Q(x) = ix^2 + 2x - 5ix + 5i - 5$
4.	$Q(x) = x^2 - 4x + 2ix + 7 - 4i$
5.	$Q(x) = x^2 - 2x + 2ix + 9 - 2i$
6.	$Q(x) = x^2 - 6x - ix + 15 + 3i$
7.	$Q(x) = ix^2 - 4ix + 4x - i - 8$
8.	$Q(x) = x^2 - 6x - ix + 11 + 3i$
9.	$Q(x) = x^2 - 7x + 2ix + 9 - 7i$
10.	$Q(x) = x^2 - 4x + 4ix + 9 - 8i$
11.	$Q(x) = x^2 + 2x + 2ix - 4 + 2i$
12.	$Q(x) = x^2 - 4x - ix + 10 + 2i$
13.	$Q(x) = ix^2 + 2x + 2ix + 2 - 4i$
14.	$Q(x) = x^2 - 4x - 4ix + 1 + 8i$
15.	$Q(x) = ix^2 + 4x + 2ix + 4 - 7i$
16.	$Q(x) = x^2 - 2x - 2ix + 4 + 2i$
17.	$Q(x) = x^2 - 4x - 2ix + 7 + 4i$
18.	$Q(x) = x^2 + x + 4ix - 10 + 2i$
19.	$Q(x) = x^2 - 5x - 4ix + 2 + 10i$
20.	$Q(x) = x^2 - x + 6ix - 11 - 3i$

Задание 7.Составить многочлен по заданным условиям.

Вариант	Задание									
1.	Многочлен с действительными коэффициентами третьей степе-									
	ни, ес	ни, если $x_1 = 2,5$ и $x_2 = -3 + i$ – два из его корней								
2.	Многочлен с действительными коэффициентами четвертой сте-					ой сте-				
	пени,	если $x_1 = 3$	– корень мно	гочлена кратн	ости 2 и x_2 =	= 2 + i				
	– оди	н из других к	орней многоч	лена						
3.	Мног	очлен, если в	се его корни	и соответству	тощие их кра	гности				
	приве	дены в табли	це:			-				
		корень	1	-2	-1+i					
		кратность	2	1	1					
4.	Мног	очлен с дейс	твительными	коэффициент	гами четверто	ой сте-				
	пени,	если $x_1 = i$ -	- корень мног	очлена кратно	ости 2					
5.	Мног	очлен с дейс	твительными	коэффициент	гами третьей	степе-				
	ни, ес	ни, если $x_1 = -4$ и $x_2 = 1 + 2i$ – два из его корней								
6.	Мног	очлен, если в	се его корни	и соответству	тощие их кра	гности				
	приведены в таблице:									
		корень	3	-1	i					
		кратность	2	2	1					
7.	Мног	очлен с дейс	твительными	коэффициент	гами четверто	ой сте-				
	пени,	если $x_1 = 1$	$-2i$ и $x_2 = 2$	-i – два из е	го корней					
8.	Мног	очлен с дейс	твительными	коэффициент	гами четверто	ой сте-				
	пени,	если $x_1 = 1 +$	- 2 <i>i</i> – корень м	иногочлена кр	ратности 2					
9.	Мног	очлен с дейс	твительными	коэффициент	гами третьей	степе-				
	ни, если $x_1 = -0.5$ и $x_2 = 6 - i$ – два из его корней									
10.	Многочлен, если все его корни и соответствующие их кратн				тности					
	приве	едены в табли	це:			_				
		корень	1	1+i	1- <i>i</i>					
		кратность	3	1	1					
			•			-				

Задание									
Многочлен с действительными коэффициентами четвертой сте-					й сте-				
пени,	если $x_1 = -2$	2 – корен	ь мн(огочлен	на крат	ности 2	2 и х ₂	=4i	
один из других корней многочлена									
Многочлен, если все его корни и соответствующие их кратно					гности				
приве	дены в табли	це:	1					1	
-	корень	-1		3-	+ <i>i</i>	3-	-i		
	кратность	2		-	1	-	1		
							-		
пени,	если $x_1 =$	$-1 - \kappa$	орен	ь мно	гочлен	а кра	тности	2 и	
$x_2 =$	1 - 2i - один	из други	х кор	эней мн	ногочле	ена			
Много	очлен с дейс	твительн	ЫМИ	коэфф	ициент	ами че	тверто	й сте-	
пени, если $x_1 = 2 - i$ – корень многочлена кратности 2									
Много	очлен, если в	се его ко	рни	и сооте	ветству	ющие	их крат	гности	
приведены в таблице:									
_	корень	5		-	1	2	2i		
	кратность	1			2	-	1		
Много	очлен с дейс	твительн	ЫМИ	коэфф	ициент	ами че	тверто	й сте-	
пени,	если $x_1 = i$ и	$x_2 = 2$	+i –	два из	его ко	рней			
Много	очлен с дейс	твительн	ЫМИ	коэфф	ициент	ами че	тверто	й сте-	
пени,	если $x_1 = -2$	k+i — кор	ень :	многоч	лена к	ратност	ги 2		
Много	очлен с дейс	твительн	ЫМИ	коэфф	ициент	ами тр	етьей	степе-	
ни, ес	ли $x_1 = -0.5$	$x_2 = -$	-3+	2i – ди	ва из ег	о корн	ей		
Многочлен с действительными коэффициентами третьей степе					степе-				
ни, ес	ли $x_1 = -1,5$	и $x_2 = 4$	4+i	– два и	із его	корней			
Много	очлен, если в	се его ко	рни	и сооте	ветству	ющие	их крат	гности	
	коре	НЬ	_	4		i			
	краті	ность	-	1	•	3			
		пени, если $x_1 = -2$ один из других кор Многочлен, если в приведены в табли корень кратность Многочлен с дейспени, если $x_1 = x_2 = 1 - 2i$ один Многочлен с дейспени, если $x_1 = 2 - 2i$ Многочлен, если в приведены в табли корень кратность Многочлен с дейспени, если $x_1 = i$ и Многочлен с дейспени, если $x_1 = i$ и Многочлен с дейспени, если $x_1 = -2i$ Многочлен с дейспени, если $x_1 = -2i$ Многочлен с дейсни, если $x_1 = -2i$ Многочлен с дейсни, если $x_1 = -2i$ Многочлен с дейсни, если $x_1 = -1,5i$ Многочлен, если в приведены в табли корень коре	пени, если $x_1 = -2$ — коренодин из других корней многоминия других корней многом Многочлен, если все его коприведены в таблице:	Многочлен с действительными пени, если $x_1 = -2$ — корень многочлен, если все его корни приведены в таблице:	Многочлен с действительными коэфф пени, если $x_1 = -2$ – корень многочлен один из других корней многочлена Многочлен, если все его корни и соотт приведены в таблице: Корень	Многочлен с действительными коэффициент пени, если $x_1 = -2$ — корень многочлена крат один из других корней многочлена Многочлен, если все его корни и соответству приведены в таблице: Корень	Многочлен с действительными коэффициентами чести из других корней многочлена кратности и один из других корней многочлена Многочлен, если все его корни и соответствующие приведены в таблице: Корень	Многочлен с действительными коэффициентами четверто пени, если $x_1 = -2$ – корень многочлена кратности 2 и x_2 один из других корней многочлена Многочлен, если все его корни и соответствующие их кратприведены в таблице: Корень	

Примеры выполнения заданий

Пример 1.

Найти
$$z_1 + z_2$$
, $z_1 \cdot z_2$, z_1^2 , $\frac{z_1}{z_2}$, если $z_1 = 4 - 5i$, $z_2 = 2 + 3i$.

Решение.

Сложение и умножение комплексных чисел, записанных в алгебраической форме, производят подобно сложению и умножению многочленов.

$$z_1 + z_2 = 4 - 5i + 2 + 3i = (4 + 2) + (-5 + 3)i = 6 - 2i$$

$$z_1 \cdot z_2 = (4 - 5i) \cdot (2 + 3i) = 8 + 12i - 10i - 15i^2 = 8 + 2i - 15(-1) = 23 + 2i$$
$$z_1^2 = (4 - 5i)^2 = 16 - 40i + 25i^2 = 16 - 40i - 25 = -9 - 40i$$

При делении одного комплексного числа на другое, делимое и делитель умножают на комплексное число, сопряженное делителю.

$$\frac{z_1}{z_2} = \frac{4 - 5i}{2 + 3i} = \frac{(4 - 5i) \cdot (2 - 3i)}{(2 + 3i) \cdot (2 - 3i)} = \frac{8 - 10i - 12i + 15i^2}{2^2 - (3i)^2} = \frac{8 - 22i - 15}{4 + 9} = \frac{-7 - 22i}{13} = -\frac{7}{13} - \frac{22}{13}i.$$

Пример 2.

Найти i^9 , i^{27} .

Решение.

Для любых $q,r \in N$ имеет место равенство

$$i^{4q+r} = i^r$$

Следовательно,

$$i^9 = i^{4 \cdot 2 + 1} = i^1 = i$$
,

$$i^{27} = i^{6\cdot 4+3} = i^3 = i^2 \cdot i = -1 \cdot i = -i$$
.

Пример 3.

Найти действительные решения уравнения

$$(-2+5i) x + 2i = (1-2i) y + 3ix - 3.$$

Решение.

Представим выражения в левой и правой части уравнения в виде a + bi

$$(-2+5i) x + 2i = (1-2i) y + 3ix - 3$$
$$-2x + 5ix + 2i = y - 2i y + 3ix - 3$$
$$-2x + (5x+2)i = y - 3 + (-2y + 3x)i$$

Комплексные числа $z_1 = a + bi$ и $z_2 = c + di$ равны, если равны их действительные части и мнимые части, то есть

$$z_1 = z_2 \Leftrightarrow a = c, b = d$$
.

Следовательно, имеем систему

$$\begin{cases}
-2x = y - 3, \\
5x + 2 = -2y + 3x;
\end{cases} \Leftrightarrow \begin{cases}
y = -2x + 3, \\
5x + 2 = -2(-2x + 3) + 3x;
\end{cases} \Leftrightarrow \begin{cases}
y = -2x + 3, \\
5x + 2 = 4x - 6 + 3x;
\end{cases} \Leftrightarrow \begin{cases}
y = -2x + 3, \\
-2x = -8;
\end{cases} \Leftrightarrow \begin{cases}
y = -2x + 3, \\
x = 4.
\end{cases}$$

Итак, x = 4, y = 5.

Пример 4.

Дать геометрическое описание множества точек комплексной плоскости, удовлетворяющих условию $|\text{Re}\,(z+3-i)| < 1$.

Решение.

$$\operatorname{Re}(z+3-i)$$
 – действительная часть числа $z+3-i$.

$$z+3-i = a+bi+3-i = (a+3)+(b-1)i$$

Re $(z+3-i) = a+3$

Итак,
$$|a+3| < 1$$
 $|a+3| < 1 \Leftrightarrow -1 < a+3 < 1 \Leftrightarrow -4 < a < -2$.

Изображением множества точек M(a,b) на комплексной плоскости, удовлетворяющих условию -4 < a < -2, служит бесконечная полоса, заключенная между прямыми a = -4 и a = -2, не включая точки этих прямых. (Рис. 1)

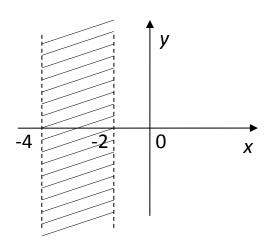


Рисунок 1.

Пример 5.

Представить комплексные числа $z_1 = 1 + i$ и $z_2 = 1 - \sqrt{3}i$ в тригонометрической и экспоненциальной формах.

Решение:

Любое комплексное число можно представить в виде:

$$z = a + bi = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} + \frac{bi}{\sqrt{a^2 + b^2}} \right) = r(\cos \varphi + i \sin \varphi),$$

где $r=\sqrt{a^2+b^2}$ — модуль комплексного числа z (обозначают |z|), φ — аргумент комплексного числа z (обозначают $\arg z$), обычно выбирают $\varphi\in[0,2\pi)$, реже берут $\varphi\in(-\pi,\pi]$. φ находят из условий:

$$\cos \varphi = \frac{a}{r}, \sin \varphi = \frac{b}{r}.$$

Символом $e^{i \varphi}$ обозначают комплексное число $\cos \varphi + i \sin \varphi$. Поэтому любое комплексное число можно представить в виде:

$$z = a + bi = re^{i\varphi}$$

Для представления комплексного числа $z_1 = 1 + i$ в тригонометрической и экспоненциальной формах, найдем модуль и аргумент этого числа.

$$a_1 = 1, \ b_1 = 1, \qquad r_1 = \sqrt{a_1^2 + b_1^2} = \sqrt{1 + 1} = \sqrt{2},$$
 $\varphi_1 : \begin{cases} \cos \varphi_1 = \frac{a_1}{r_1} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}, \\ \sin \varphi_1 = \frac{b_1}{r_1} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \end{cases} \Rightarrow \varphi_1 = \frac{\pi}{4}.$ (Рис. 2)

Следовательно,

$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$
 – тригонометрическая форма записи z_1 .

$$z_1 = \sqrt{2}\,e^{irac{\pi}{4}}$$
 —экспоненциальная форма записи z_1 .

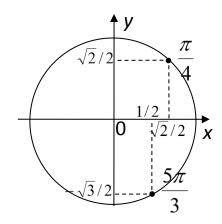


Рисунок 2

Представим $z_2 = 1 - \sqrt{3}i$ в тригонометрической и экспоненциальной формах.

$$a_2 = 1, b_2 = -\sqrt{3},$$

$$r_2 = \sqrt{a_2^2 + b_2^2} = \sqrt{1 + (-\sqrt{3})^2} = \sqrt{4} = 2,$$

$$\varphi_2 : \begin{cases} \cos \varphi_2 = \frac{a_2}{r_2} = \frac{1}{2}, \\ \sin \varphi_2 = \frac{b_2}{r_2} = \frac{-\sqrt{3}}{2} \end{cases} \Rightarrow \varphi_2 = \frac{5\pi}{3}. \text{ (Рис. 2)}$$

Следовательно,

$$z_2=2\bigg(\cos{rac{5\pi}{3}}+i\sin{rac{5\pi}{3}}\bigg)$$
 — тригонометрическая форма записи z_2 .

$$z_2 = 2 e^{i \frac{5\pi}{3}}$$
 —экспоненциальная форма записи z_2 .

Пример 6.

Для комплексных чисел $z_1=1+i$ и $z_2=1-\sqrt{3}i$, записанных в тригонометрической форме, выполнить действия:

1)
$$z_1 \cdot z_2$$
, 2) $\frac{z_1}{z_2}$, 3) z_2^5 , 4) $\sqrt[3]{z_2}$.

Решение.

В примере 4 была получена тригонометрическая форма каждого из данных комплексных чисел:

$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right), \ z_2 = 2 \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right)$$

1) Чтобы перемножить два комплексных числа, записанных в тригонометрической форме, нужно перемножить их модули, а аргументы сложить:

$$z_{1} \cdot z_{2} = r_{1}(\cos \varphi_{1} + i \sin \varphi_{1}) \cdot r_{2}(\cos \varphi_{2} + i \sin \varphi_{2}) =$$

$$= r_{1}r_{2}(\cos(\varphi_{1} + \varphi_{2}) + i \sin(\varphi_{1} + \varphi_{2}))$$

$$z_{1} \cdot z_{2} = 2\sqrt{2} \left(\cos\left(\frac{\pi}{4} + \frac{5\pi}{3}\right) + i \sin\left(\frac{\pi}{4} + \frac{5\pi}{3}\right)\right) = 2\sqrt{2} \left(\cos\frac{23\pi}{12} + i \sin\frac{23\pi}{12}\right)$$

2) Чтобы найти частное от деления двух комплексных чисел, нужно найти частное от деления их модулей и разность их аргументов:

$$\begin{split} \frac{z_1}{z_2} &= \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \frac{r_1}{r_2}(\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)) \\ &\qquad \qquad \frac{z_1}{z_2} = \frac{\sqrt{2}}{2} \left(\cos\left(\frac{\pi}{4} - \frac{5\pi}{3}\right) + i\sin\left(\frac{\pi}{4} - \frac{5\pi}{3}\right)\right) = \\ &\qquad \qquad = \frac{\sqrt{2}}{2} \left(\cos\left(-\frac{17\pi}{12}\right) + i\sin\left(-\frac{17\pi}{12}\right)\right) = \\ &\qquad \qquad = \frac{\sqrt{2}}{2} \left(\cos\left(-\frac{17\pi}{12} + 2\pi\right) + i\sin\left(-\frac{17\pi}{12} + 2\pi\right)\right) = \frac{\sqrt{2}}{2} \left(\cos\left(\frac{7\pi}{12}\right) + i\sin\left(\frac{7\pi}{12}\right)\right). \end{split}$$

В рассмотренном примере к полученному аргументу добавлено выражение 2π (период тригонометрических функций $\rho = \cos \varphi$ и $\rho = \sin \varphi$) для того, чтобы получить значение аргумента из промежутка $[0, 2\pi)$.

3) Возведение комплексного числа в натуральную степень производится по формуле Муавра:

$$z^{n} = r^{n} (\cos n\varphi + i \sin n\varphi).$$

$$z_{2}^{5} = 2^{5} \left(\cos\left(5 \cdot \frac{5\pi}{3}\right) + i \sin\left(5 \cdot \frac{5\pi}{3}\right)\right) = 32 \left(\cos\frac{25\pi}{3} + i \sin\frac{25\pi}{3}\right) =$$

$$= 32 \left(\cos\left(8\pi + \frac{\pi}{3}\right) + i \sin\left(8\pi + \frac{\pi}{3}\right)\right) = 32 \left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}\right).$$

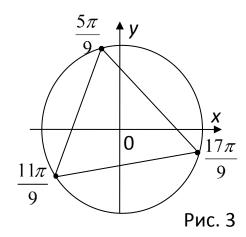
4) Существует ровно n корней n-ой степени из комплексного числа:

$$\sqrt[n]{z} = \sqrt[n]{r(\cos \varphi + i \sin \varphi)} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n}\right),$$
где $k = 0, 1, ..., n-1$.

В рассматриваемом примере

$$\sqrt[3]{z} = \sqrt[3]{2} \left(\cos \frac{\frac{5\pi}{3} + 2\pi k}{3} + i \sin \frac{\frac{5\pi}{3} + 2\pi k}{3} \right)$$
, где $k = 0, 1, 2$

при
$$k=0$$
 $\sqrt[3]{2}\left(\cos\frac{5\pi/3}{3}+i\sin\frac{5\pi/3}{3}\right)=\sqrt[3]{2}\left(\cos\frac{5\pi}{9}+i\sin\frac{5\pi}{9}\right)$,


при *k*=1

$$\sqrt[3]{2} \left(\cos \frac{\frac{5\pi}{3} + 2\pi}{3} + i \sin \frac{\frac{5\pi}{3} + 2\pi}{3} \right) = \sqrt[3]{2} \left(\cos \frac{11\pi}{9} + i \sin \frac{11\pi}{9} \right),$$

при *k*=2

$$\sqrt[3]{2} \left(\cos \frac{\frac{5\pi}{3} + 4\pi}{3} + i \sin \frac{\frac{5\pi}{3} + 4\pi}{3} \right) = \sqrt[3]{2} \left(\cos \frac{17\pi}{9} + i \sin \frac{17\pi}{9} \right).$$

Заметим, что аргументы получившихся комплексных чисел разбивают единичную окружность на три равные дуги. (Рис. 3).

Пример 7.

Найти корни многочлена второй степени (с комплексными коэффициентами) на множестве комплексных чисел и разложить его на множители.

$$Q(x) = ix^2 + 2ix + x + 13i + 1$$

Решение.

Так как многочлен второй степени имеет в множестве комплексных чисел ровно 2 корня, то его разложение $Q(x) = a_2 x^2 + a_1 x + a_0$ на множители имеет вид:

$$Q(x) = a_2(x - x_1)(x - x_2).$$

Найдем корни многочлена, решив соответствующее квадратное уравнение.

$$ix^{2} + 2ix + x + 13i + 1 = 0$$

$$ix^{2} + (2i+1)x + (13i+1) = 0$$

$$D = (2i+1)^{2} - 4i(13i+1) = 4i^{2} + 4i + 1 - 52i^{2} - 4i = -4 + 1 + 52 = 49$$

$$x_{1} = \frac{-(2i+1) + 7}{2i} = \frac{-2i + 6}{2i} = -1 - 3i, \ x_{2} = \frac{-(2i+1) - 7}{2i} = \frac{-2i - 8}{2i} = -1 + 4i$$

$$Q(x) = i(x - (-1-3i))(x - (-1+4i)) = i(x+1+3i)(x+1-4i).$$

Пример 8.

Составить многочлен с действительными коэффициентами четвертой степени, если x = -1 + 2i – корень многочлена кратности 2.

Решение.

Так как по условию многочлен имеет действительные коэффициенты, то его комплексные корни являются сопряженными, причем одной и той же кратности.

x = -1 + 2i – корень кратности $2 \Rightarrow x = -1 - 2i$ также корень кратности 2.

Следовательно, искомый многочлен может быть представлен в виде

$$M(x) = (x - (-1 + 2i))^{2} (x - (-1 - 2i))^{2} = ((x - (-1 + 2i))(x - (-1 - 2i)))^{2} =$$

$$= ((x - (-1 + 2i))(x - (-1 - 2i)))^{2} = ((x + 1 - 2i)(x + 1 + 2i))^{2} =$$

$$= ((x + 1)^{2} - 4i^{2})^{2} = (x^{2} + 2x + 1 - 4i^{2})^{2} = (x^{2} + 2x + 1 + 4)^{2} = (x^{2} + 2x + 5)^{2} =$$

$$= x^{4} + 4x^{3} + 4x^{2} + 10x^{2} + 20x + 25 = x^{4} + 4x^{3} + 14x^{2} + 20x + 25.$$

Расчетно-графическая работа №8 «Матрицы и определители. Системы линейных уравнений»

Работа состоит из 2 заданий для 25 вариантов.

Вариант 1

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 2 & -1 & -3 \\ 8 & -7 & -6 \\ -3 & 4 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 & -2 \\ 3 & -5 & 4 \\ 1 & 2 & 1 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x + y + 3z = 7, \\ 2x + 3y + z = 1, \\ 3x + 2y + z = 6. \end{cases}$$
 6)
$$\begin{cases} 3x + 2y - 4z = 8, \\ 2x + 4y - 5z = 11, \\ x - 2y + z = 1. \end{cases}$$
 B)
$$\begin{cases} x + y + z = 0, \\ 2x - 3y + 4z = 0, \\ 4x - 11y + 10z = 0. \end{cases}$$

Вариант 2

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 3 & 5 & -6 \\ 2 & 4 & 3 \\ -3 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 8 & -5 \\ -3 & -1 & 0 \\ 4 & 5 & -3 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x - y + 2z = 3, \\ x + y + 2z = -4, \\ 4x + y + 4z = -3. \end{cases}$$
 $\begin{cases} x + y + z = 1, \\ x - y + 2z = -5, \\ 2x + 3z = -2. \end{cases}$ B)
$$\begin{cases} 3x - y + 2z = 0, \\ x + y + z = 0, \\ x + 3y + 3z = 0. \end{cases}$$

Вариант 3

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 6 & 0 \\ 2 & 4 & -6 \\ 1 & -2 & 3 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

90

a)
$$\begin{cases} 3x - y + z = 12, \\ x + 2y + 4z = 6, \\ 5x + y + 2z = 3. \end{cases} \begin{cases} 2x - y + 4z = 15, \\ 3x - y + z = 8, \\ 5x - 2y + 5z = 0. \end{cases}$$
 B)
$$\begin{cases} x + 3y + 2z = 0, \\ 2x - y + 3z = 0, \\ 3x - 5y + 4z = 0. \end{cases}$$

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} -6 & 1 & 11 \\ 9 & 2 & 5 \\ 0 & 3 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 7 \\ 1 & -3 & 2 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x - y + 3z = -4, \\ x + 3y - z = 11, \\ x - 2y + 2z = -7. \end{cases} \begin{cases} 3x - 3y + 2z = 2, \\ 4x - 5y + 2z = 1, \\ x - 2y = 5. \end{cases}$$
 B)
$$\begin{cases} 4x - y + 10z = 0, \\ x + 2y - z = 0, \\ 2x - 3y + 4z = 0. \end{cases}$$

Вариант 5

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 & 2 \\ 2 & 1 & 1 \\ 3 & 7 & 1 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 3x - 2y + 4z = 12, \\ 3x + 4y - 2z = 6, \\ 2x - y - z = -9. \end{cases} \begin{cases} 3x + 2y - 4z = 8, \\ 2x + 4y - 5z = 1, \\ 5x + 6y - 9z = 2. \end{cases}$$
 B)
$$\begin{cases} 2x + 5y + z = 0, \\ 4x + 6y + 3z = 0, \\ x - y - 2z = 0. \end{cases}$$

91

Вариант 6

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 3 & -1 \\ 4 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 & -1 \\ 3 & 1 & 2 \\ 5 & 3 & 0 \end{pmatrix}$$

a)
$$\begin{cases} 8x + 3y - 6z = -4, \\ x + y - z = 2, \\ 4x + y - 3z = -5. \end{cases}$$
 6)
$$\begin{cases} 3x + y + 2z = -3, \\ 2x + 2y + 5z = 5, \\ 5x + 3y + 7z = 1. \end{cases}$$
 B)
$$\begin{cases} 3x - y - 3z = 0, \\ 2x + 3y + z = 0, \\ x + y + 3z = 0. \end{cases}$$

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 6 & 7 & 3 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 5 \\ 4 & -1 & -2 \\ 4 & 3 & 7 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 4x + y - 3z = 9, \\ x + y - z = -2, \\ 8x + 3y - 6z = 12. \end{cases}$$
 6)
$$\begin{cases} 4x - 7y - 2z = 0, \\ 2x - 3y - 4z = 6, \\ 2x - 4y + 2z = 2. \end{cases}$$
 B)
$$\begin{cases} x - y + 2z = 0, \\ 2x + y - 3z = 0, \\ 3x + 2z = 0. \end{cases}$$

Вариант 8

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} -2 & 3 & 4 \\ 3 & -1 & -4 \\ -1 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 3 & 1 \\ 0 & 6 & 2 \\ 1 & 9 & 2 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x + 3y + 4z = 33, \\ 7x - 5y = 24, \\ 4x + 11z = 39. \end{cases}$$
 6)
$$\begin{cases} 5x - 9y - 4z = 6, \\ x - 7y - 5z = 1, \\ 4x - 2y + z = 2. \end{cases}$$
 B)
$$\begin{cases} 2x - y - 5z = 0, \\ x + 2y - 3z = 0, \\ 5x + 1y + 4z = 02. \end{cases}$$

92

Вариант 9

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 6 & 5 & 2 \\ 1 & 9 & 2 \\ 4 & 5 & 2 \end{pmatrix}$$

a)
$$\begin{cases} 2x + 3y + 4z = 12, \\ 7x - 5y + z = -33, \\ 4x + z = -7. \end{cases}$$
 6)
$$\begin{cases} x - 5y + z = 3, \\ 3x + 2y - z = 7, \\ 4x - 3y = 1. \end{cases}$$
 B)
$$\begin{cases} 5x - 5y + 4z = 0, \\ 3x + y + 3z = 0, \\ x + 7y - z = 0. \end{cases}$$

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 2 & 6 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & -3 & 2 \\ -4 & 0 & 5 \\ 3 & 2 & -3 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} x + 4y - z = 6, \\ 5y + 4z = -20, \\ 3x - 2y + 5z = -22. \end{cases}$$
 6)
$$\begin{cases} 5x - 5y - 4z = -3, \\ x - y + 5z = 1, \\ 4x - 4y - 9z = 0. \end{cases}$$
 B)
$$\begin{cases} x + 3y - z = 0, \\ 2x + 5y - 2z = 0, \\ x + y + 5z = 0. \end{cases}$$

Вариант 11

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 6 & 9 & 4 \\ -1 & -1 & 1 \\ 10 & 1 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 4 & 3 \\ 0 & 5 & 2 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 3x - 2y + 4z = 21, \\ 3x + 4y - 2z = 9, \\ 2x - y - z = 10. \end{cases} \begin{cases} 7x - 2y - z = 2, \\ 6x - 4y - 5z = 3, \\ x + 2y + 4z = 5. \end{cases}$$
 B)
$$\begin{cases} 2x + y + 3z = 0, \\ 3x - y + 2z = 0, \\ x + 3y + 4z = 0. \end{cases}$$

Вариант 12

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 3 & 1 & 7 \\ 2 & 1 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 5 & 4 \\ -3 & 0 & 1 \\ 5 & 6 & 4 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

93

a)
$$\begin{cases} 3x - 2y - 5z = 5, \\ 2x + 3y - 4z = 12, \\ x - 2y + 3z = -1. \end{cases} \begin{cases} 4x - 3y + z = 3, \\ x + y - z = 4, \\ 3x - 4y + 2z = 2. \end{cases}$$
B)
$$\begin{cases} x - 2y - z = 0, \\ 2x + 3y + 2z = 0, \\ 3x - 2y + 5z = 0. \end{cases}$$

$$\begin{cases} 4x - 3y + z = 3, \\ x + y - z = 4, \\ 3x - 4y + 2z = 2. \end{cases}$$

B)
$$\begin{cases} x - 2y - z = 0, \\ 2x + 3y + 2z = 0, \\ 3x - 2y + 5z = 0. \end{cases}$$

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 5 & 1 & -2 \\ 1 & 3 & -1 \\ 8 & 4 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 5 & 5 \\ 7 & 1 & 2 \\ 1 & 6 & 0 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 4x + y + 4z = 19, \\ 2x - y + 2z = 11, \\ x + y + 2z = 8. \end{cases}$$
 6)
$$\begin{cases} 3x + y + 2z = 0, \\ 2x + 2y - 3z = 9, \\ x - y + z = 2. \end{cases}$$
 B)
$$\begin{cases} 2x + y - z = 0, \\ 3x - 2y + 4z = 0, \\ x - 5y + 3z = 0. \end{cases}$$

$$6) \begin{cases} 3x + y + 2z = 0, \\ 2x + 2y - 3z = 9, \\ x - y + z = 2. \end{cases}$$

B)
$$\begin{cases} 2x + y - z = 0, \\ 3x - 2y + 4z = 0, \\ x - 5y + 3z = 0. \end{cases}$$

Вариант 14

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 2 & 2 & 5 \\ 3 & 3 & 6 \\ 4 & 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & -1 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x - y + 2z = 0, \\ 4x + y + 4z = 6, \\ x + y + 2z = 4. \end{cases}$$

6)
$$\begin{cases} 6x + 3y - 5z = 0, \\ 9x + 4y - 7z = 3, \\ 3x + y - 2z = 5. \end{cases}$$

a)
$$\begin{cases} 2x - y + 2z = 0, \\ 4x + y + 4z = 6, \\ x + y + 2z = 4. \end{cases}$$
 6)
$$\begin{cases} 6x + 3y - 5z = 0, \\ 9x + 4y - 7z = 3, \\ 3x + y - 2z = 5. \end{cases}$$
 B)
$$\begin{cases} 4x + y + 3z = 0, \\ 8x - y + 7z = 0, \\ 2x + 4y - 5z = 0. \end{cases}$$

Вариант 15

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 1 & -2 & 5 \\ 3 & 0 & 6 \\ 4 & 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & -1 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

94

a)
$$\begin{cases} 2x - y + 2z = 8, \\ x + y + 2z = 11, \\ 4x + y + 4z = 22. \end{cases}$$
 6)
$$\begin{cases} 8x - y + 3z = 2, \\ 4x + y + 6z = 1, \\ 4x - 2y - 3z = 7. \end{cases}$$
 8)
$$\begin{cases} x + 4y - 3z = 0, \\ 2x + 5y + z = 0, \\ x - 7y + 2z = 0. \end{cases}$$

6)
$$\begin{cases} 8x - y + 3z = 2, \\ 4x + y + 6z = 1, \\ 4x - 2y - 3z = 7. \end{cases}$$

$$(x + 4y - 3z = 0), 2x + 5y + z = 0, x - 7y + 2z = 0.$$

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 5 & 4 & 2 \\ 1 & 2 & 4 \\ 3 & 0 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 4 & -5 \\ 3 & -7 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x - y - 3z = -9, \\ x + 5y + z = 20, \\ 3x + 4y + 2z = 15. \end{cases}$$
 6)
$$\begin{cases} 2x + 3y + 4z = 5, \\ x + y + 5z = 6, \\ 3x + 4y + 9z = 0. \end{cases}$$
 B)
$$\begin{cases} x - 2y + z = 0, \\ 3x + y + 2z = 0, \\ 2x - 3y + 5z = 0. \end{cases}$$

$$6) \begin{cases} 2x + 3y + 4z = 5, \\ x + y + 5z = 6, \\ 3x + 4y + 9z = 0. \end{cases}$$

B)
$$\begin{cases} x - 2y + z = 0, \\ 3x + y + 2z = 0, \\ 2x - 3y + 5z = 0 \end{cases}$$

Вариант 17

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & 2 \\ 2 & 2 & -7 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 7 & 0 \\ 5 & 3 & 1 \\ 1 & -6 & 1 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x - y - 3z = 0, \\ 3x + 4y + 2z = 1, \\ x + 5y + z = -3. \end{cases}$$

a)
$$\begin{cases} 2x - y - 3z = 0, \\ 3x + 4y + 2z = 1, \\ x + 5y + z = -3. \end{cases}$$
 6)
$$\begin{cases} 2x - 3y - 4z = 1, \\ 7x - 9y - z = 3, \\ 5x - 6y + 3z = 7. \end{cases}$$
 B)
$$\begin{cases} x + 2y + 3z = 0, \\ 2x - y - z = 0, \\ 3x + 3y + 2z = 0. \end{cases}$$

95

B)
$$\begin{cases} x + 2y + 3z = 0, \\ 2x - y - z = 0, \\ 3x + 3y + 2z = 0. \end{cases}$$

Вариант 18

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 8 & -1 & -1 \\ 5 & -5 & -1 \\ 10 & 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 & 5 \\ 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

a)
$$\begin{cases} -3x + 5y + 6z = -8, \\ 3x + y + z = -4, \\ x - 4y - 2z = -9. \end{cases}$$
 6)
$$\begin{cases} 5x + 6y - 2z = 2, \\ 2x + 3y - z = 9, \\ 3x + 3y - z = 1. \end{cases}$$
 B)
$$\begin{cases} 3x + 2y = 0, \\ x - y + 2z = 0, \\ 4x - 2y + 5z = 0. \end{cases}$$

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 3 & -7 & 2 \\ 1 & -8 & 3 \\ 4 & -2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 5 & -3 \\ 2 & 4 & 1 \\ 2 & 1 & -5 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 3x + y + z = -4, \\ -3x + 5y + 6z = 36, \\ x - 4y - 2z = -19. \end{cases}$$
 6)
$$\begin{cases} 3x + y - 2z = 6, \\ 5x - 3y + 2z = 4, \\ -2x + 5y + 4z = 0. \end{cases}$$
 B)
$$\begin{cases} 2x - y + 3z = 0, \\ x + 2y - 5z = 0, \\ 3x + y + z = 0. \end{cases}$$

Вариант 20

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 3 & -1 & 0 \\ 3 & 5 & 1 \\ 4 & -7 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 2 \\ 1 & -8 & 5 \\ 3 & 0 & 2 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 3x - y + z = -11, \\ 5x + y + 2z = 8, 6 \end{cases} \begin{cases} 2x + y + z = 2, \\ 5x + y + 3z = 4, B \end{cases} \begin{cases} 3x + 2y - z = 0, \\ 2x - y + 3z = 0, \\ 4x + 3y + 4z = 0. \end{cases}$$

Вариант 21

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 2 & -1 & -4 \\ 4 & -9 & 3 \\ 2 & -7 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & -4 \\ 5 & -6 & 4 \\ 7 & -4 & 1 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

96

a)
$$\begin{cases} 3x - y + z = 9, \\ 5x + y + 2z = 11, \\ x + 2y + 4z = 19 \end{cases}$$

$$\begin{cases}
x - 2y - 3z = 3, \\
x + 3y - 5z = 0, \\
2x + y - 8z = 4.
\end{cases}$$

a)
$$\begin{cases} 3x - y + z = 9, \\ 5x + y + 2z = 11, \\ x + 2y + 4z = 19. \end{cases}$$
 6)
$$\begin{cases} x - 2y - 3z = 3, \\ x + 3y - 5z = 0, \\ 2x + y - 8z = 4. \end{cases}$$
 B)
$$\begin{cases} x - 3y - 4z = 0, \\ 5x - 8y - 2z = 0, \\ 2x + y - z = 0. \end{cases}$$

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 8 & 5 & -1 \\ 1 & 5 & 3 \\ 1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & -7 & -6 \\ 3 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x + 3y + z = 4, \\ 2x + y + 3z = 0, \\ 3x + 2y + z = 1. \end{cases}$$

$$\begin{cases}
x - 4y - 2z = 0, \\
3x - 5y - 6z = 2, \\
4x - 9y - 8z = 1.
\end{cases}$$

a)
$$\begin{cases} 2x + 3y + z = 4, \\ 2x + y + 3z = 0, \\ 3x + 2y + z = 1. \end{cases}$$
 6)
$$\begin{cases} x - 4y - 2z = 0, \\ 3x - 5y - 6z = 2, \\ 4x - 9y - 8z = 1. \end{cases}$$
 B)
$$\begin{cases} 3x + 5y - z = 0, \\ 2x + 4y - 3z = 0, \\ x - 3y + z = 0. \end{cases}$$

Вариант 23

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -4 & 1 \\ 4 & -3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & -4 \\ 2 & 5 & -3 \\ 4 & -3 & 2 \end{pmatrix}$$

2. Решите систему линейных уравнений методом Крамера.

a)
$$\begin{cases} 2x + 3y + z = 12, \\ 2x + y + 3z = 16, \\ 3x + 2y + z = 8. \end{cases}$$

$$6) \begin{cases} 4x + y - 3z = 1 \\ 3x + y - z = 2, \\ x - 2z = 5. \end{cases}$$

97

a)
$$\begin{cases} 2x + 3y + z = 12, \\ 2x + y + 3z = 16, \\ 3x + 2y + z = 8. \end{cases}$$
 6)
$$\begin{cases} 4x + y - 3z = 1, \\ 3x + y - z = 2, \\ x - 2z = 5. \end{cases}$$
 B)
$$\begin{cases} 3x - 2y + z = 0, \\ 2x - 3y + 2z = 0, \\ 4x + y - 4z = 0. \end{cases}$$

Вариант 24

1. Выполните действия над матрицами 2A-3B+4E.

$$A = \begin{pmatrix} 5 & -8 & -4 \\ 7 & 0 & -5 \\ 4 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 5 & 5 \\ 1 & 2 & 1 \\ 2 & -1 & -3 \end{pmatrix}$$

a)
$$\begin{cases} x - 2y + 3z = 14, \\ 2x + 3y - 4z = -16, \\ 3x - 2y - 5z = -8. \end{cases}$$
 6)
$$\begin{cases} 3x - 5y + 3z = 4, \\ x + 2y + z = 8, \\ 2x - 7y + 2z = 1. \end{cases}$$
 B)
$$\begin{cases} 7x + y - 3z = 0, \\ 3x - 2y + 3z = 0, \\ x - y + 2z = 0. \end{cases}$$

$$6) \begin{cases} 3x - 5y + 3z = 4, \\ x + 2y + z = 8, \\ 2x - 7y + 2z = 1. \end{cases}$$

$$\begin{cases}
7x + y - 3z = 0, \\
3x - 2y + 3z = 0, \\
x - y + 2z = 0.
\end{cases}$$

1. Выполните действия над матрицами 2А-3В+4Е.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 4 \\ 3 & -5 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 7 & 5 & 1 \\ 5 & 3 & -1 \\ 1 & 2 & 3 \end{pmatrix}$$

a)
$$\begin{cases} 3x + 4y - 2z = 11, \\ 2x - y - z = 4, \\ 3x - 2y + 4z = 11. \end{cases}$$
 6)
$$\begin{cases} x - 2y + 3z = 6, \\ 2x + 3y - 4z = 2, \\ 3x + y - z = 5. \end{cases}$$
 B)
$$\begin{cases} x + 2y - 4z = 0, \\ 2x - y - 3z = 0, \\ x + 3y + z = 0. \end{cases}$$

6)
$$\begin{cases} x - 2y + 3z = 6, \\ 2x + 3y - 4z = 2, \\ 3x + y - z = 5. \end{cases}$$

B)
$$\begin{cases} x + 2y - 4z = 0, \\ 2x - y - 3z = 0, \\ x + 3y + z = 0. \end{cases}$$

3 Контроль внеаудиторной самостоятельной работы студентов

Контроль внеаудиторной самостоятельной работы студентов проводится преподавателем в аудитории.

Результативность самостоятельной работы студентов оценивается посредством следующих форм контроля знаний и умений студентов:

устный опрос;
собеседование;
представленный текст расчетно-графической.

Результаты контроля используются для оценки текущей успеваемости студентов. Оценка текущей успеваемости студентов выставляется в учебный журнал.

4 Информационное обеспечение внеаудиторной самостоятельной работы студентов

Основные источники (для студентов)

- 1 Баврин И.И. Математика [Электронный ресурс]:учебник и практикум для СПО. 2-е изд., перераб. и доп.М.: Издательство Юрайт, 2016. 616 с.
- 2 Богомолов Н.В., Самойленко П.И. Математика: учебник для СПО. 5-е изд., перераб. и доп. М.: Издательство Юрайт, 2015. 396 с.
- 3 Богомолов Н.В. Практическое занятие по математике: учеб.пособие для СПО. 11-е изд., перераб. и доп. М.: Издательство Юрайт, 2016. 495 с.
- 4 Жавнерчик В.Э., Майсеня Л.И., Савилова Ю.И. Справочник по математике и физике [Электронный ресурс]. Минск: Вышэйшая школа, 2014. 400 с.
- 5 Каазик Ю.Я. Математический словарь [Электронный ресурс]. М.: ФИЗМАТЛИТ, 2007. 335 с.
- 6 Маслова Т.Н., Суходский А.М. Справочник по математике [Электронный ресурс]. М.: Мир и Образование, 2013. 672 с.
- 7 Математика в примерах и задачах. Часть 1 [Электронный ресурс]: учебное пособие/ Л.И. Майсеня [и др.]. Минск: Вышэйшая школа, 2014. 359 с.
- 8 Математика в примерах и задачах. Часть 2 [Электронный ресурс]: учебное пособие/ Л.И. Майсеня [и др.]. Минск: Вышэйшая школа, 2014. 431 с.

Дополнительные источники (для студентов)

- 9 Башмаков М.И. Математика: задачник: учеб.пособие для учреждений нач. и сред. проф. образования. 5-е изд. М.: Издательский центр «Академия», 2013. 416 с.
- 10 Богомолов Н.В. Математика. Задачи с решениями. В 2 т. Т 1: учеб.пособие для СПО. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2016. 364 с.
- 11 Богомолов Н.В. Математика. Задачи с решениями. В 2 т. Т 2: учеб.пособие для СПО. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2016. 285 с.

- 12 Генин Л.Г. Задачи и их решения для любителей школьной математики [Электронный ресурс]: пособие для учащихся старших классов и абитуриентов.М.: Издательский дом МЭИ, 2014. 64 с.
- 13 Григорьев В.П., Сабурова Т.Н. Математика: учебник для студ. учреждений сред.проф. образования. М.: Издательский центр «Академия», 2016. 368 с.
- 14 Захарова А.Е., Высочанская Ю.М. Элементы теории вероятностей, комбинаторики и статистики в основной школе [Электронный ресурс]: учебнометодическое пособие. М.: БИНОМ. Лаборатория знаний, 2015. 136 с.
- 15 Мэйсон Дж., Бёртон Л., Стэйси К. Математика это просто 2.0. Думай математически [Электронный ресурс]. М.: Техносфера, 2015. 352 с.
- 16 Математика. Сборник задач по базовому курсу [Электронный ресурс]: учебно-методическое пособие/ Н.Д. Золотарёва [и др.]. М.: БИНОМ. Лаборатория знаний, 2015. 241 с.
- 17 Оакли Барбара. Думай как математик [Электронный ресурс]: как решать любые задачи быстрее и эффективнее. М.: Альпина Паблишер, 2016. 284 с.

ЛИСТ СОГЛАСОВАНИЯ

СОГЛАСОВАНО

Старший методист М.В. Отс

hoone Методист по ИТ Ю.В.Пеховкина